RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Mathematical simulation of the atmospheric electric field disturbance during geomagnetic storm on 17 march 2015

PII
10.31857/S0207401X24060094-1
DOI
10.31857/S0207401X24060094
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 6
Pages
81-90
Abstract
It follows from the observational data that during geomagnetic storms, variations of the atmospheric electric field occur. In the present paper, we present simulation results of ionospheric electric fields during the main phase of the geomagnetic storm on March 17, 2015, within the framework of a quasi-stationary model of a conductor consisting of the atmosphere and the ionosphere. For this purpose, the satellite data on the global distribution of currents between the magnetosphere and the ionosphere are used to describe the magnetospheric source of the electric field. A variation of the electric potential in the ionosphere leads to a variation of the electric field in the entire atmosphere, including its surface layer. It is important that during a geomagnetic storm, the observatory in which the atmospheric electric field is measured significantly changes its position relative to the direction of the Sun. This leads to significant changes in the ionospheric conductivity above the observatory, which affects both the ionospheric electric field and the atmospheric part of the global electrical circuit. Therefore when assessing the effect of a geomagnetic storm on the atmospheric electric field in a particular observatory, it is necessary to take into account local time when comparing measurement data with geomagnetic activity indices. For the storm of March 17–18, 2015, we found that taking into account the variations of the ionospheric electric field when calculating the atmospheric electric field allows us to reproduce the disturbances of the fair weather electric field observed at the Borok Geophysical Observatory. Based on the simulation results, it is shown that during extremely strong magnetic storms, additional atmospheric electric field variations in some places on the Earth have the same scale as the fair weather field itself.
Keywords
атмосфера ионосфера магнитная буря проводимость электрическое поле математическое моделирование
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Volland H. Atmospheric electrodynamics. Heidelberg: Spring, 1984.
  2. 2. Шалимов С.Л., Рожной А.А., Соловьева М.С., Ольшанская Е.В. // Физика Земли. 2019. № 1. С. 199; https://doi.org/10.31857/S0002-333720191199-213
  3. 3. Карпов И.В., Борчевкина О.П., Васильев П.А. // Хим. физика. 2020. Т. 39. № 4. С. 63; https://doi.org/10.31857/S0207401X20040081
  4. 4. Лебле С.Б., Смирнова Е.С. // Хим. физика. 2020. Т. 39. № 4. С. 68; https://doi.org/10.31857/S0207401X20040123
  5. 5. Клименко М.В., Ратовский К.Г., Клименко В.В., и др. // Хим. физика. 2021. Т. 40. № 10. С. 85; https://doi.org/10.31857/S0207401X21100083
  6. 6. Голубков Г.В., Адамсон С.О., Борчевкина О.П. и др. // Хим. физика. 2022. Т. 41. № 5. С. 531; https://doi.org/10.31857/S0207401X22050053
  7. 7. Olson D.E. // Pure Appl. Geophys. 1971. V. 84. P. 118.
  8. 8. Апсен А.Г., Канониди Х.Д., Чернышева С.П., Четаев Д.Н., Шефтелъ В.М. Магнитосферные эффекты в атмосферном электричестве. М.: Наука, 1988.
  9. 9. Frank-Kamenetsky A.V., Troshichev O.A., Burns G.B., Papitashvili V.O. // J. Geophys. Res. 2001. V. 106. P. 179; https://doi.org/10.1029/2000JA900058
  10. 10. Никифорова Н.Н., Клейменова Н.Г., Козырева О.В., Кубицки М., Михновски С. // Геомагнетизм и аэрономия. 2003. Т. 42. № 1. С. 32.
  11. 11. Клейменова Н.Г., Козырева О.В., Михновски С., Кубицки М. // Геомагнетизм и аэрономия. 2008. Т. 48. № 5. С. 650.
  12. 12. Смирнов С.Э., Михайлова Г.А., Капустина О.В. // Геомагнетизм и аэрономия. 2013.Т. 53. № 4. С. 532; https://doi.org/10.7868/S0016794013040147
  13. 13. Анисимов С.В., Шихова Н.М., Клейменова Н.Г. // Геомагнетизм и аэрономия. 2021. Т. 61. № 2. С. 172; https://doi.org/10.31857/S0016794021020024
  14. 14. Анисимов С.В., Афиногенов К.В., Галиченко С.В. и др. // Физика атмосферы и океана. 2023. Т. 59. № 5. С. 595; https://doi.org/10.31857/S0002351523050024
  15. 15. Richmond A.D. // J. Geomagn. Geoelectr. 1979. V. 31. P. 287.
  16. 16. Axford W.I. // Rev. Geophys. 1969. V. 7. № 1,2. P. 421; https://doi.org/10.1029/RG007i001p₀0421
  17. 17. Pudovkin M.I. // Space Sci. Rev. 1974. V. 16. P. 727.
  18. 18. Gonzalez W.D., Joselyn J. A., Kamide Y., et al. // J. Geophys. Res. 1994. V. 99. № A4. P. 5771; https://doi.org/10.1029/93JA02867
  19. 19. Ратовский К.Г., Клименко М.В., Ясюкевич Ю.В. и др. // Хим. физика. 2020. Т. 39. № 10. С. 57; https://doi.org/10.31857/S0207401X20100106
  20. 20. Milan S.E., Carter J.A., Korth H. et al. // J. Geophys. Res. Space Phys. 2015. V. 120. P. 10415; https://doi.org/10.1002/2015JA021680
  21. 21. Denisenko V.V., Rycroft M.J., Harrison R.G. // Surv. Geophys. 2019. V. 40. № 1. P. 1; https://doi.org/10.1007/s10712-018-9499-6
  22. 22. Bilitza D., Altadill D., Truhlik V. et al. // Space Weather. 2017. V. 15. P. 418; https://doi.org/10.1002/2016SW001593
  23. 23. Alken P., Thébault E., Beggan C.D. et al. // Earth Planets Space. 2021. V. 73. P. 49; https://doi.org/10.1186/s40623-020-01288-x
  24. 24. Emmert J. T., Drob D. P., Picone J. M., et al. // Earth Space Sci. 2021. V. 8. P. e2020EA001321; https://doi.org/10.1029/2020EA001321
  25. 25. Weimer D.R. // J. Geophys. Res. 1999. V. 104. № 1. P. 185.
  26. 26. Denisenko V.V., Zamay S.S. // Planet. Space Sci. 1992. V. 40. № 7. P. 941.
  27. 27. Burrell A.G., Chisham G., Milan S.E. et al. // Ann. Geophys. 2020. V. 38. P. 481; https://doi.org/10.5194/angeo-38-481-2020
  28. 28. Денисенко В.В. // Сиб. мат. журн. 2002. Т. 43. № 6. С. 1304.
  29. 29. Денисенко В.В. Энергетические методы для эллиптических уравнений с несимметричными коэффициентами. Новосибирск: Изд-во СО РАН, 1995.
  30. 30. Лунюшкин С.Б. // Исслед. по геомагнетизму, аэрономии и физике Солнца. 1988. № 81. С. 181.
  31. 31. Pustovalov K., Nagorskiy P., Oglezneva M., Smirnov S. // Atmosphere. 2022. V. 13. P. 614; https://doi.org/10.3390/atmos13040614
  32. 32. Harrison R.G. // Surv. Geophys. 2013. V. 34. P. 209; https://doi.org/10.1007/s10712-012-9210-2A
  33. 33. Мареев Е.А. // УФН. 2010. Т. 180. № 5. С. 527; https://doi.org/10.3367/UFNr.0180.201005h.0527
  34. 34. Голубков Г.В., Адамсон С.О. и др. // Хим. физика. 2022. Т. 41. № 5. С. 531; https://doi.org/10.31857/S0207401X22050053
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library