RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

The effect of aluminum in its mixtures with ammonium nitrate on the ignition of burning and its transition to convective burning regime

PII
10.31857/S0207401X24080109-1
DOI
10.31857/S0207401X24080109
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 8
Pages
92-100
Abstract
The ignition of normal layer-by-layer burning and its transition to convective burning regime in mixtures of ammonium nitrate with bulk density aluminum are studied. The experiments in a constant-volume bomb with pressure registration were carried out. The porosity of the samples was 0.55–0.59, the particle size of the ammonium nitrate was varied from 20–40 to 250–630 µm, and the aluminum content varied from 8 to 47 wt %. Aluminum of two grades was used: ASD4 and PAP2. It is shown that mixtures are capable to be ignited at the igniter pressure close to or above the critical (minimum) value. The values of the critical pressure of the igniter, the pressure and time at which burning and convective burning occurs for mixtures with different particle sizes of ammonium nitrate and aluminum and different concentrations are measured. The replacement of aluminum ASD4 with PAP2 leads to a significant (by an order of magnitude or even more) decrease in the values of critical pressure and pressures at which the burning and convective burning begins.
Keywords
послойное горение конвективное горение аммиачная селитра алюминий пороговое давление воспламенителя
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Prugh R.W. // Process Saf. Prog. 2020. V. 39. № 4. P. 12210. https://doi.org/10.1002/prs.12210
  2. 2. Wes Y. // Winston-Salem J. 2022. February. № 7. P. 1.
  3. 3. Беляев А.Ф., Боболев В.К., Коротков А.И. и др. Переход горения конденсированных систем во взрыв. М.: Наука, 1973.
  4. 4. Беляев А.Ф. Горение, детонация и работа взрыва конденсированных систем. М.: Наука, 1968.
  5. 5. Храповский В.Е. // Хим. физика. 2023. Т. 42. № 3. С. 1. https://doi.org/10.31857/S0207401X23030068
  6. 6. Храповский В.Е., Худавердиев В.Г., Сулимов А.А. // Горение и взрыв. 2013. Т. 6. № 2. С. 211.
  7. 7. Ермолаев Б.С., Сулимов А.А., Храповский В.Е. и др. // Хим. физика. 2011. Т. 30. № 8. С. 34. https://doi.org/10.7868/S0207401X16020047
  8. 8. Ермолаев Б.С., Худавердиев В.Г., Беляев А.А. и др. // Хим. физика. 2016. Т 35. № 2. С. 41. https://doi.org/10.7868/S0207401X16020047
  9. 9. Ермолаев Б.С., Худавердиев В.Г., Беляев А.А. и др. // Горение и взрыв, 2020. Т.13. № 2. С.80. https://doi.org/10.30826/CE20130209
  10. 10. Ермолаев Б.С., Худавердиев В.Г., Беляев А.А. // Горение и взрыв. 2015. Т. 8. № 2. С. 234. https://doi.org/10.7868/S0207401X16020047
  11. 11. ТУ 1791-007-49421776-2011. Порошок алюминиевый АСД4. М: Стандартинформ, 2011.
  12. 12. ГОСТ 549495. Пудра алюминиевая / Межгосударственный совет по стандартизации, метрологии, сертификации. Минск, 2006.
  13. 13. Дульнев Г.Н., Заричняк Ю.П. Теплопроводность смесей и композиционных материалов. Справочная книга. Л.: Энергия, 1974.
  14. 14. Golub G. // J. Spacecraft. 1965. V 2. № 4. P. 593. https://doi.org/10.2514/3.28234
  15. 15. Caveny L.H., Glick R.L. // J. Spaceraft. 1967. V. 4. № 1. P. 79. https://doi.org/10.2514/3.28813
  16. 16. Бахман Н.Н., Лобанов И.Н. // Физика горения и взрыва. 1983. Т. 10. № 1. С. 46.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library