- PII
- 10.31857/S0207401X24090013-1
- DOI
- 10.31857/S0207401X24090013
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 9
- Pages
- 3-18
- Abstract
- The formation of collision complexes, also called quasi–complexes (QC), metastable dimers or Feshbach resonances, has been studied for CH4 – He, Ne, Ar systems by the method of classical trajectories. The calculations used exact 3D classical Hamilton equations in the action–angle variables and non-empirical surfaces of the interaction potential energy. The selection of collision parameters was carried out by the Monte Carlo method. A statistical analysis of the QCs parameters is performed. It is shown that QCs can be both short-lived and long-lived and are characterized by a variety of interparticle separations. Among the total number of collisions, the fraction of QCs increases rapidly with a decrease of temperature. Formulas are given that reveal the contribution of QCs to the cross sections of the rotational RT- relaxation of CH4. It is shown that in methane mixtures considered RT- relaxation in QC- type collisions is much more effective than in ordinary inelastic collisions.
- Keywords
- квазисвязанные комплексы метан инертные газы метод классических траекторий метод Монте-Карло столкновительный RT- обмен
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 2
References
- 1. Никитин Е.Е. Теория элементарных атомно-молекулярных процессов в газах. М.: Химия, 1970.
- 2. Levine R.D., Bernstein R.B. Molecular reaction dynamics. Oxford (Engl.) Clarendon Press; NY: Oxford University Press, 1974.
- 3. Heicklen J. Atmospheric chemistry. New York: Academic Press, 1976.
- 4. Bradley J.N. Flame and combustion phenomena. London: Chapman and Hall, 1972; https://www.eolss.net/sample-chapters/c09/e4-14-03-01.pdf
- 5. Watson W.D. // Acc. Chem. Res. 1977. V. 10. № 6. P. 221.
- 6. Hirschfelder J.O., Curtiss Ch.F., Bird R.B. Molecular theory of gases and liquids. New York: Wiley and Sons. London: Chapman and Hall, 1954.
- 7. Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere. Proc conf., Dordrecht, Springer: 2003. P. 23; https://doi.org/10.1007/978-94-010-0025-3
- 8. Vigasin A.A. // Chem. Phys. Lett. 1985. V. 117. № 1. P. 85; https://doi.org/10.1016/0009-2614 (85)80410-3
- 9. Molecular complexes in Earth’s, planetary, cometary, and interstellar atmospheres. Eds. Vigasin A.A., Slanina Z., Singapore: World Scientific Publ, 1998, P. 60.
- 10. Ivanov S.V. // J. Quant. Spectrosc. Radiat. Transf. 2016. V. 177. P. 269; https://doi.org/10.1016/j.jqsrt.2016.01.034
- 11. Иванов С.В. // Оптика и спектроскопия. 2022. T. 130. № 12. С. 1778; https://10.21883/OS.2022.12.54081.4144-22
- 12. Nesbitt D.J. // Chem. Rev. 2012. V. 112. № 9. P. 5062.
- 13. Flatin D.C., Goyette T.M., Beaky M.M. et al. // J. Chem. Phys. 1999. V. 110. № 4. P. 2087.
- 14. Billing G.D. // Chem. Phys. 1980. V. 50. № 2. P. 165; https://doi.org/10.1016/0301-0104 (80)87036-4
- 15. Cacciatore M., Billing G.D. // Ibid. 1981. V. 58. № 3. P. 395; https://doi.org/10.1016/0301-0104 (81)80074-2
- 16. Kurnosov A., Cacciatore M., Napartovich A. Chem. Phys. Lett. 2021. V. 775. P. 138680; https://doi.org/10.1016/j.cplett.2021.138680
- 17. Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere, edited by C. Camy-Peyret and A.A. Vigasin. Springer, Dordrecht, 2003, Р. 49.
- 18. Ivanov S.V. // Mol. Phys. 2004. V. 102. № 16–17. P. 1871; https://doi.org/10.1080/0026897042000274766
- 19. Miller W.H. Eds. Alder B., Fernbach S., Rotenberg M. Methods in computational physics. Advances in research and applications. V. 10: Atomic and molecular scattering. New York, London: Academic Press, 1971.
- 20. Levine R.D. // Acc. Chem. Res. 1970. V. 3. P. 273.
- 21. Asfin R.E.,Buldyreva J.V., Sinyakova T.N et al. // J. Chem. Phys. 2015. V. 142. № 85. P. 051101; http://dx.doi.org/10.1063/1.4906874
- 22. Oparin D.V., Filippov N.N., Grigoriev I.M. et al. // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 196. P. 87; https://doi.org/10.1016/j.jqsrt.2017.04.002
- 23. Chistikov D.N., Finenko A.A., Lokshtanov S.E. et al. // J. Chem. Phys. 2019. V. 151, № 19. P. 194106.
- 24. Chistikov D.N., Finenko A.A., Kalugina Yu.N. et al. // Ibid. 2021. V. 155. № 6. P. 064301; https://doi.org/10.1063/5.0060779
- 25. Голяк И.С., Анфимов Д.Р., Винтайкин И.Б. и др. // Хим. физика. 2023. Т. 42. № 4. С. 3; https://doi.org/10.31857/S0207401x23040088
- 26. Винтайкин И. Б., Голяк И. С., Королев П. А и др. // Хим. физика. 2021. Т. 40. № 5. С. 9.
- 27. Родионов А.И., Родионов И.Д., Родионова И.П. и др. // Хим. физика. 2021. Т. 40. № 10. С. 61; https://doi.org/10.31857/S0207401X21100113
- 28. Зеленов В.В., Апарина Е. // Хим. физика. 2021. Т. 40. № 10. С. 76.
- 29. Дьяков Ю.А., Адамсон С.О., Ванг П.К и др. // Хим. физика. 2021. Т. 40. № 10. С. 22.
- 30. Ларин И.К. // Хим. физика. 2020. Т. 39. № 3. С. 85; https://doi.org/10.31857/S0207401X20030085
- 31. Hirota E. // J. Mol. Spectrocc. 1979. V. 77. P. 213.
- 32. Свердлов Л.М., Ковнер М.А., Крайнов Е.П. Колебательные спектры многоатомных молекул. Москва: Наука, 1974.
- 33. Herranz J., Stoicheff B.P. // J. Mol. Spectrosc. 1963. V. 10. P. 448.
- 34. Herzberg G. Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules. 1991.
- 35. Голдстейн Г. Классическая механика. Пер. с англ. М.: ГИТТЛ, 1957.
- 36. Buck U., Kohl K.H., Kohlhase A. et al. // Mol. Phys. 1985. V. 55. № 6. P. 1255.
- 37. Buck U., Kohlhase A., Secrest D. et al. // Mol. Phys. 1985. V. 55. № 6. P. 1233.
- 38. Buck U., Schleusener J., Malik D.J., et al. // J. Chem. Phys. 1981. V. 74. № 3. P. 1707.
- 39. Armstrong R.L., Blumenfeld S.M., Gray C.G. // Can. J. Phys. 1968. V. 46. № 11. P. 1331.
- 40. Gray C.G. // J. Chem. Phys. 1969. V. 50. P. 549; https://doi.org/10.1063/1.1670844
- 41. Gear C.W. Numerical Initial Value Problems in Ordinary Differential Equations. Englewood Cliffs №3: Prentice-Hall, 1971.
- 42. Chapman S., Green S. // J. Chem. Phys. 1977. V. 67. № 5. P. 2317; https://doi.org/10.1063/1.435067
- 43. Langer R.E. // Phys. Rev. 1937. V. 51. P. 669; https://doi.org/10.1103/PhysRev.51.669
- 44. Smith L.N., Secrest D. // J. Chem. Phys. 1981. V. 74. № 7. P. 3882.
- 45. Liu W.-K., Zhang Q., Lin S. et al. // Chin. J. Phys. 1994. V. 32. № 3. P. 269.
- 46. Heil T.G., Secrest D. // J. Chem. Phys. 1981. V. 69. № 1. P. 219.
- 47. Бёрд Г. Молекулярная газовая динамика. Пер. с англ. М.: Мир, 1981.
- 48. Hartmann J.-M., Boulet C., Robert D. Collisional effects on molecular spectra: Laboratory experiments and models, consequences for applications. Amsterdam: Elsevier Science, 2008; https://doi.org/10.1016/B978-0-444-52017-3.X0001-5