RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Non-covalent interaction of carbon, silicon and germanium atoms

PII
10.31857/S0207401X24090029-1
DOI
10.31857/S0207401X24090029
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 9
Pages
19-28
Abstract
From first principles (electron gas approximation) the calculation of non-covalent interaction potentials for homo- and heteroatomic pairs of carbon, silicon and germanium without the formation of valence chemical bonds was carried out. The calculations took into account the coulomb, kinetic, exchange, and correlation contributions to the interaction energy. The electron density was set taking into account the shell structure of atoms in the Hartree-Fock approximation. The parameters of the Lennard-Jones and Morse potentials and the constants of the dispersion interaction are calculated for all cases. It is shown that for non-covalent interaction the known empirical rules of Lorentz-Berthelot combination for potential parameters are not always fulfilled. Based on the calculations a new generalized potential is proposed that can be used in molecular dynamics and Monte Carlo simulations, as well as in constructing equations of state. Calculations of the second virial coefficient for monatomic carbon vapor are carried out.
Keywords
нековалентное взаимодействие метод функционала электронной плотности метод Хартри–Фока приближение электронного газа парный потенциал взаимодействия параметры парных потенциалов второй вириальный коэффициент
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Бараш Ю.С. Силы Ван-Дер-Ваальса. М.: Наука, 1988.
  2. 2. Матиенко Л.И., Миль Е.М., Бинюков В.И. // Хим. физика. 2020. Т. 39. № 6. С. 87; https://doi.org/10.31857/S0207401X20060084
  3. 3. Rapaport D.C. The Art of Molecular Dynamics Simulation. N.Y.: Cambridge University Press, 2004.
  4. 4. Поттер Д. Вычислительные методы в физике. М.: Мир, 1975.
  5. 5. Рит М. Наноконструирование в науке и технике. Введение в мир нанорасчета. Ижевск: РХД, 2005.
  6. 6. Суздалев И.П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. М.: КомКнига, 2006.
  7. 7. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. М.: Физматлит, 2007.
  8. 8. Kadau K., Barber J.L., Germann T.C. et al. // Philos. Trans. R. Soc., A. 2010. V. 368. P. 1547; https://doi.org/10.1098/rsta.2009.0218
  9. 9. Cosden I.A., Lukes J.R. // Comput. Phys. Commun. 2013. V. 184. № 8. P. 1958; https://doi.org/10.1016/j.cpc.2013.03.009
  10. 10. Гудман Ф., Вахман Г. Динамика рассеяния газа поверхностью. М.: Мир, 1980.
  11. 11. Каплан И.Г. Межмолекулярные взаимодействия. Физическая интерпретация, компьютерные расчеты и модельные потенциалы. М.: Бином. Лаборатория знаний, 2017.
  12. 12. Parr R.G., Yang W. Density-functional theory of atoms and molecules. Oxford University Press, 1989.
  13. 13. Balamane H., Halicioglu T., Tiller W.A. // Phys. Rev. B. 1992. V. 46. № 4. P.2250; https://doi.org/10.1103/PhysRevB.46.2250
  14. 14. Erhart P., Albe K. // Phys. Rev. B. 2005. V. 71. P. 035211; https://doi.org/10.1103/PhysRevB.71.035211
  15. 15. Kim E.H., Shin Y.H., Lee B.J. // Calphad. 2008. V. 32. № 1. P. 34; https://doi.org/10.1016/j.calphad.2007.12.003
  16. 16. Chu X., Dalgarno A. // J. Chem. Phys. 2004. V.121. № 9. P. 4083; https://doi.org/10.1063/1.1779576
  17. 17. Zhang G.X., Tkatchenko A., Paier J. et al. // Phys. Rev. Lett. 2011. V. 107. P. 245501; https://doi.org/10.1103/PhysRevLett.107.245501
  18. 18. Gordon R.G., Kim Y.S. // J. Chem. Phys. 1972. V. 56. № 6. P. 3122; https://doi.org/10.1063/1.1677649
  19. 19. Waldman M., Gordon R.G. //Ibid 1972. V. 71. № 3. P. 1325; https://doi. org/10.1063/1.438433
  20. 20. Дедков Г.В. // УФН 1995. Т. 165. № 8. С. 919; https://doi.org/10.3367/UFNr.0165.199508c.0919
  21. 21. Strand T.G., Bonham R.A. // J. Chem. Phys. 1964. V. 40. № 6. P. 1686; https://doi.org/10.1063/1.1725380
  22. 22. Abramowitz M., Stegun I.A. Handbook of mathematical functions with formulas, graphs, and mathematical tables. N. Y.: Dover Publications, 1972.
  23. 23. Barker J.A., Pompe A. // Aust. J. Chem. 1967. V. 21 №7. P.1683; https://doi.org/10.1071/CH9681683
  24. 24. Tang K. T., Toennies J. P. // J. Chem. Phys. 2003. V. 118. P.4976; https://doi.org/10.1063/1.1543944
  25. 25. Магомедов М.Н. // ФТТ 2020. Т. 62. № 7. С. 998; https://doi.org/10.21883/FTT.2020.07.49462.026
  26. 26. Шарафутдинов Г.З. // Вестн. МГУ. Сер. 1, Математика, Механика. 2017. № 6. С. 34; https://doi.org/10.3103/S0027133017060012
  27. 27. Рехвиашвили С.Ш., Бухурова М.М., Сокуров А.А. // ЖНХ. 2020. T. 65. № 9. С. 1229; https://doi.org/10.31857/S0044457X20090135
  28. 28. Рехвиашвили С.Ш. // Мат. моделирование. 2003. Т. 15. № 2. С. 62.
  29. 29. Дохликова Н.В., Гатин А.К., Сарвадий С.Ю. и др. // Хим. физика. 2021. Т. 40. № 7. С. 67; https://doi.org/10.31857/S0207401X21070025
  30. 30. Дохликова Н.В., Гатин А.К., Сарвадий С.Ю. и др. // Хим. физика. 2022. Т. 41. № 4. С. 72; https://doi.org/10.31857/S0207401X22040021
  31. 31. Дохликова Н.В., Озерин С.А., Доронин С.В. и др. // Хим. физика. 2022. Т. 41. № 6. С. 72; https://doi.org/10.31857/S0207401X22060024
  32. 32. Дохликова Н.В., Гатин А.К., Сарвадий С.Ю. и др. // Хим. физика. 2022. Т. 41. № 7. С. 76; https://doi.org/10.31857/S0207401X22070044
  33. 33. Руденко Е.И., Дохликова Н.В., Гатин А.К. и др. // Хим. физика. 2023. Т. 42. № 7. С. 70; https://doi.org/10.31857/S0207401X23070166
  34. 34. Pyykkö P., Atsumi M. // Chem. Eur. J. 2009. V. 15. P. 186; https://doi.org/10.1002/chem.200800987
  35. 35. Мейсон Э., Сперлинг Т. Вириальное уравнение состояния. М.: Мир, 1972.
  36. 36. Edalat M., Lan S.S., Pang F., Mansoori G.A. // Intern. J. Thermophys. 1980. V. 1. № 2. P. 177; https://doi.org/10.1007/BF00504519
  37. 37. Nitzke I., Pohl S., Thol M., Span R., Vrabec J. // Mol. Phys. 2022. V. 120. № 11. P. 1; https://doi.org/10.1080/00268976.2022.2078240
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library