- Код статьи
- 10.31857/S0207401X24100028-1
- DOI
- 10.31857/S0207401X24100028
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 43 / Номер выпуска 10
- Страницы
- 21-35
- Аннотация
- На основе квантовохимического расчета методом X3LYP/6-311++G(2d, 2p) для ориентационных изомеров кластеров воды (H2O)n = 2–5, соответствующих полному набору ориентированных графов с числом вершин от 2 до 5, определены термодинамические функции и концентрации кластеров в газовой фазе. Установлено, что для правильной оценки газофазных концентраций необходимо учитывать явление ориентационной изомерии кластеров воды. Для полного набора ориентационных изомеров концентрация кластеров воды в газовой фазе в насыщенном паре при стандартных условиях оказывается на 1–2 порядка выше концентраций, рассчитанных лишь для самых низкоэнергетических структур.
- Ключевые слова
- кластеры воды водородные связи ориентационная изомерия атмосферная химия газофазные концентрации термодинамика
- Дата публикации
- 14.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 2
Библиография
- 1. Ларин И.К. // Хим. физика. 2022. Т. 41. № 5. С. 37; doi: 10.31857/S0207401X22050089
- 2. Голяк И.С., Анфимов Д.Р., Винтайкин И.Б. и др. // Хим. физика. 2023. Т. 42. № 4. С. 3; doi: 10.31857/S0207401X23040088
- 3. Голубков Г.В., Берлин А.А., Дьяков Ю.А. и др. // Хим. физика. 2023. Т. 42. № 10. С. 64; doi: 10.31857/S0207401X23100072
- 4. Vaida V. // J. Chem. Phys. 2011. V. 135. № 2. P. 020901; doi: 10.1063/1.3608919
- 5. Anglada J.M., Hoffman G.J., Slipchenko L.V. et al. // J. Phys. Chem. A. 2013. V. 117. № 40. P. 10381; doi: 10.1021/jp407282c
- 6. Frederiks N.C., Hariharan A., Johnson C.J. // Annu. Rev. Phys. Chem. 2023. V. 74. № 1. P. 99; doi: 10.1146/annurev-physchem-062322-041503
- 7. Ignatov S.K., Sennikov P.G., Razuvaev A.G. et al. // J. Phys. Chem. A. 2003. V. 107. № 41. P. 8705; doi: 10.1021/jp034618h
- 8. Ignatov S.K., Sennikov P.G., Razuvaev A.G. et al. // J. Phys. Chem. A. 2004. V. 108. № 16. P. 3642; doi: 10.1021/jp038041f
- 9. Morokuma K., Muguruma C. // J. Amer. Chem. Soc. 1994. V. 116. № 22. P. 10316; doi: 10.1021/ja00101a068
- 10. Vincent M.A., Palmer I.J., Hillier I.H. et al. // J. Am. Chem. Soc. 1998. V. 120. № 14. P. 3431; doi: 10.1021/ja973640j
- 11. Okumoto S., Fujita N., Yamabe S. // J. Phys. Chem. A. 1998. V. 102. № 22. P. 3991; doi: 10.1021/jp980705b
- 12. Bernal J.D., Fowler R.H. // J. Chem. Phys. 1933. V. 1. № 8. P. 515; doi: 10.1063/1.1749327
- 13. Jordan K.D., Sen K. // Chemical Modelling. V.13. Cambridge: Royal Society of Chemistry, 2016. P. 105; doi: 10.1039/9781782626862-00105
- 14. Gadre S.R., Yeole S.D., Sahu N. // Chem. Rev. 2014. V. 114. № 24. P. 12132; doi: 10.1021/cr4006632
- 15. Xantheas S.S. // J. Chem. Phys. 1995. V. 102. № 11. P. 4505; doi: 10.1063/1.469499
- 16. Dunn M.E., Pokon E.K., Shields G.C. // Intern. J. Quantum Chem. 2004. V. 100. № 6. P. 1065; doi: 10.1002/qua.20251
- 17. Dunn M.E., Pokon E.K., Shields G.C. // J. Amer. Chem. Soc. 2004. V. 126. № 8. P. 2647; doi: 10.1021/ja038928p
- 18. Temelso B., Archer K.A., Shields G.C. // J. Phys. Chem. A. 2011. V. 115. № 43. P. 12034; doi: 10.1021/jp2069489
- 19. Bates D.M., Tschumper G.S. // J. Phys. Chem. A. 2009. V. 113. № 15. P. 3555; doi: 10.1021/jp8105919
- 20. Галашев А.Е., Рахманова О.Р., Чуканов В.Н. // Хим. физика. 2005. Т. 24. № 3. C. 90.
- 21. Новрузова О.А., Новрузов А.Н., Рахманова О.Р. и др. // Хим. физика. 2007. Т. 26. № 7. C. 74.
- 22. Галашев А.Е. // Хим. физика. 2013. Т. 32. № 7. C. 86; doi: 10.7868/S0207401X1305004X
- 23. Галашев А.Е. // Хим. физика. 2014. Т. 33. № 11. C. 32; doi: 10.7868/S0207401X14110041
- 24. Дроздов С.В., Востриков А.А. // Письма в ЖТФ. 2000. Т. 26. № 11. С. 90.
- 25. Белега Е.Д., Татаренко К.А., Трубников Д.Н. и др. // Хим. физика. 2009. Т. 28. № 5. C. 79.
- 26. Babin V., Paesani F. // Chem. Phys. Lett. 2013. V. 580. P. 1; doi: 10.1016/j.cplett.2013.06.041
- 27. Wang Y., Babin V., Bowman J.M. et al. // J. Amer. Chem. Soc. 2012. V. 134. № 27. P. 11116; doi: 10.1021/ja304528m
- 28. Tissandier M.D., Singer S.J., Coe J.V. // J. Phys. Chem. A. 2000. V. 104. № 4. P. 752; doi: 10.1021/jp992711t
- 29. Mallory J.D., Mandelshtam V.A. // J. Chem. Phys. 2016. V. 145. № 6. P. 064308; doi: 10.1063/1.4960610
- 30. Brown S.E., Götz A.W., Cheng X. et al. // J. Amer. Chem. Soc. 2017. V. 139. № 20. P. 7082; doi: 10.1021/jacs.7b03143
- 31. Ignatov S.K., Razuvaev A.G., Sennikov P.G. et al. // J. Mol. Struct.: THEOCHEM. 2009. V. 908. № 1–3. P. 47; doi: 10.1016/j.theochem.2009.05.003
- 32. Дьяков Ю.А., Адамсон С.О., Ванг П.К. и др. // Хим. физика 2022. Т. 41. № 6. С. 85; doi: 10.31857/S0207401X22060036.
- 33. Shirokova E.A., Razuvaev A.G., Mayorov A.V. et al. // J. Clust. Sci. 2023. V. 34. № 4. P. 2029; doi: 10.1007/s10876-022-02365-9
- 34. Brinkmann G. // J. Math. Chem. 2009. V. 46. № 4. P. 1112; doi: 10.1007/s10910-008-9496-y
- 35. Kuo J.-L., Coe J.V., Singer S.J. et al. // J. Chem. Phys. 2001. V. 114. № 6. P. 2527; doi: 10.1063/1.1336804
- 36. Miyake T., Aida M. // Chem. Phys. Lett. 2002. V. 363. № 1–2. P. 106; doi: 10.1016/S0009-2614(02)01150-8
- 37. McKay B. Combinatorial data; https://users.cecs.anu.edu.au/~bdm/data/graphs.html
- 38. Ignatov S.K., Razuvaev A.G., Masunov A.E. // Book of Abstracts ”16-th V. A. Fock meeting on Quantum, Theoretical and Computational Chemistry”. Sochi, Russia, 2018. P. 10.
- 39. Liu D.C., Nocedal J. // Mathemat. Programming. 1989. V. 45. № 1–3. P. 503; doi: 10.1007/bf01589116
- 40. McKay B.D., Piperno A. // J. Symb. Comput. 2014. V. 60. P. 94; doi: 10.1016/j.jsc.2013.09.003
- 41. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Jr., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., J. B. Cross, Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C. and Pople J.A., Gaussian 03. Rev. D.01 Wallingford, CT: Gaussian Inc., 2004.
- 42. Chemcraft – graphical software for visualization of quantum chemistry computations; https://www.chemcraftprog.com
- 43. Ignatov S.K. Moltran v.2.5 – Program for molecular visualization and thermodynamic calculations. University of Nizhny Novgorod, 2004; http://www.qchem.unn.ru/moltran
- 44. DeVoe.H. Thermodynamics and Chemistry. Second Edition. 2019; https://www2.chem.umd.edu/thermobook/v10-screen.pdf
- 45. Kirov M.V., Fanourgakis G.S., Xantheas S.S. // Chem. Phys. Lett. 2008. V. 461. № 4–6. P. 180; doi: 10.1016/j.cplett.2008.04.079
- 46. Gudkovskikh S.V., Kirov M.V. // Chem. Phys. 2023. V. 572. P. 111947; doi: 10.1016/j.chemphys.2023.111947
- 47. Xantheas S.S. // Chem. Phys. 2000. V. 258. № 2–3. P. 225; doi: 10.1016/S0301-0104(00)00189-0