RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Three-dimensional mathematical simulation of two-phase detonation in the system of gaseous oxydizer with fuel droplets

PII
10.31857/S0207401X24100054-1
DOI
10.31857/S0207401X24100054
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 10
Pages
61-70
Abstract
The results of a three-dimensional numerical study of the propagation of detonation waves in a two-phase mixture of liquid iso-octane with air are presented. The detonation calculation technique is based on Navier-Stocks equations with the simulation of liquid phase evolution using the Lagrangian formalism. Numerical models consider droplet movement, evaporation and breakup as well as finite-rate mixing and chemical transformations. The reliability of the method is confirmed by the comparison of predicted and measured velocities of heterogeneous detonation in a vertical channel of square cross-section. The influence of the prehistory on the formation of a two-phase detonable mixture in the channel on the propagation velocity and structure of detonation waves is considered. The influence of droplet coagulation is also taken into account. New data on the spatiotemporal structure of a two-phase detonation wave have been obtained.
Keywords
гетерогенная детонация трехмерное математическое моделирование коагуляция капель структура детонации скорость детонации
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Roy G.D., Frolov S.M., Borisov A.A., Netzer D.W. // Progr. Energy Combust. Sci. 2004. V. 30. Issue 6. P. 54.
  2. 2. Фролов С.М., Аксёнов В.С., Иванов В.С., Шамшин И.О., Набатников С.А. // Горение и взрыв. 2019. Т. 12. №1. С. 63.
  3. 3. Быковский Ф. А., Ждан С.А. Непрерывная спиновая детонация. Новосибирск: ИГиЛ СО РАН, 2013.
  4. 4. Фролов С.М., Иванов В.С., Шамшин И.О. и др. // Горение и взрыв. 2022. Т. 15. №1. С.67.
  5. 5. Фролов С.М., Иванов В.С. // Хим. физика. 2021. T. 40. № 4. C. 68.
  6. 6. Smirnov N., Nikitin V., Dushin V.R. et al. // Acta Astronautica. 2015. V. 115. P. 94.
  7. 7. Fedorov A., Khmel T.A. // Combust. Explos. Shock Waves. 2005. V. 41. P. 435.
  8. 8. Dabora E.K., Weinberger L.P. // Acta Astronautica. 1974. V. 1. P. 361.
  9. 9. Митрофанов В.В. Детонация гомогенных и гетерогенных систем. Новосибирск: Изд-во Ин-та гидродинамики им. М. А. Лаврентьева СО РАН, 2003.
  10. 10. Kailasanath K. // AIAA J. 2003. V. 41. №2. P. 145.
  11. 11. Tangirala V., Dean A., Peroomian O., Palaniswamy S. // Proc. 45th AIAA Aerospace Sciences Meeting and Exhibit. V. 24. Reno, NY, 2007. P. 1173. doi:10.2514/6.2007-1173
  12. 12. Frolov S.M., Posvyanskii V.S. // Explosion Dynamics and Hazardss Eds. by Frolov S.M., Zhang F., Wolanski P. Moscow: Torus Press, 2010. P. 337.
  13. 13. Meng Q., Zhao M., Xu Y., Zhang, L., Zhang H. doi:10.48550/arXiv.2209.11913. 2022
  14. 14. Jourdaine N., Tsuboi N., Hayashi A.K. // Combust. And Flame. 2022. V. 244. P. 112278.
  15. 15. Иванов В.С., Фролов С.М. // Горение и взрыв. 2010. № 3. C. 63–70.
  16. 16. Ivanov V.S., Shamshin I.O., Frolov S.M. // Energies. 2023. V. 16. P. 7028.
  17. 17. Фролов С.М., Аксёнов В.С., Шамшин И.О. // Хим. физика. 2017. T. 36. № 6. C. 34.
  18. 18. Tannehill J.C., Dale A.A., Pletcher R.H. Computational fluid mechanics and heat transfer. Washington DC: Taylor and Francis, 1997.
  19. 19. Versteeg H.K., Malalasekera W. An introduction to computational fluid dynamics: the finite volume method. London: Longman Scientific and Technical, 2007.
  20. 20. Dukowicz J. K. Quasi–steady droplet change in the presence of convection Los Alamos: University of California, 1979.
  21. 21. Reitz R.D. // Atomisation Spray Technology. 1987. V. 3(4). P. 309.
  22. 22. Pope S.B. // Prog. Energy Combust. Sci. 1985. V. 11. № 2. P. 119.
  23. 23. Frolov S.M., Ivanov V.S., Basara B., Suffa M. // J. Loss Prevention Process Industries. 2013. V. 26. P. 302.
  24. 24. Frolov S.M., Ivanov V.S. // Deflagrative and detonative combustion / Eds. Roy G., Frolov S. Moscow: Torus Press, 2010. P. 133.
  25. 25. Mangani L., Bianchini C. // Proc. OpenFOAM International Conference. V. 1. 2007. P. 1; https://flore.unifi.it/retrieve/handle/2158/418277/15222/OFIC-07.pdf
  26. 26. Авдеев К.А., Иванов В.С., Фролов С.М., Basara B., Priesching P., Suffa M. // Горение и взрыв. 2012. T. 5. C. 91.
  27. 27. Пискунов В.Н. Теоретические модели кинетики формирования аэрозолей. Саров: РФЯЦ-ВНИИЭФ, 2000.
  28. 28. Басевич В.Я., Беляев А.А., Медведев С.Н., Посвянский В.С., Фролов C.М. // Горение и взрыв. 2015. Т. 8. № 1. C. 21.
  29. 29. Naik C., Westbrook, C.K., Herbinet O. Pitz W. Mehl M. // Proc. Combust. Inst. 2011 V. 33. P. 383.
  30. 30. Wu Z., Mao Y., Yu L., Qian Y., Lu, X. // Combust. and Flame. 2021. V. 228. P. 302.
  31. 31. Фролов С.М., Поленов А.Н., Гельфанд Б.Е., Борисов А.А. // Хим. физика. 1986. T. 5. №7. C 978.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library