- PII
- 10.31857/S0207401X24110011-1
- DOI
- 10.31857/S0207401X24110011
- Publication type
- Review
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 11
- Pages
- 3-9
- Abstract
- Bilirubin, a bile pigment having photochemical activity, plays an important role in the body. Photonics (photophysics and photochemistry) of bilirubin has attracted scientific and practical interest of researchers up to the present day. This is because its molecule is capable of ultrafast photoisomerization processes, and also contains two interacting dipyrromethenone chromophores. Furthermore, the photochemical reactions of bilirubin are used in the widespread phototherapy of neonatal jaundice (neonatal hyperbilirubinemia), carried out to reduce the level of bilirubin in the body. This review briefly considers photonics of bilirubin, as well as its main photochemical reactions in phototherapy of neonatal hyperbilirubinemia.
- Keywords
- билирубин фотоника фотоизомеризация фотоциклизация фотоокисление фототерапия неонатальной гипербилирубинемии
- Date of publication
- 20.11.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 46
References
- 1. Kim S.Y., Park S.C. // Front. Pharmacol. 2012. V. 3. P. 45; https://doi.org/10.3389/fphar.2012.00045
- 2. Sticova E., Jirsa M. // World J. Gastroenterol. 2013. V. 19. № 38. P. 6398; https://doi.org/10.3748/wjg.v19.i38.6398
- 3. Itoh S., Okada H., Koyano K. et al. // Front. Pediatr. 2023. V. 10. P. 1002408; https://doi.org/10.3389/fped.2022.1002408
- 4. Lightner D.A., McDonagh A.F. // Acc. Chem. Res. 1984. V. 17. № 12. P. 417; https://doi.org/10.1021/ar00108a002
- 5. Soto Conti C.P. // Arch. Argent. Pediatr. 2021. V. 119. № 1. P. e18; http://dx.doi.org/10.5546/aap.2021.eng.e18
- 6. Creeden J.F., Gordon D.M., Stec D.E. el al. // Amer. J. Physiol. Endocrinol. Metab. 2021. V. 320. № 2. P. E191; https://doi.org/10.1152/ajpendo.00405.2020
- 7. Optical Properties and Structure of Terrapyrroles // Eds Blauer G. and Sund H. Berlin: Walter de Gruyter, 1985. P. 311.
- 8. Lightner D.A., Gawronski J.K., Wijekoon W.M.D. // J. Amer. Chem. Soc. 1987. V. 109. № 21. P. 6354; https://doi.org/10.1021/ja00255a020
- 9. McDonagh A.F., Lightner D.A. // Pediatrics. 1985. V. 75. № 3. P 443; https://doi.org/10.1542/peds.75.3.443
- 10. McDonagh A.F., Lightner D.A. // Semin. Liver Dis. 1988. V. 8. № 3. P. 272; https://doi.org/10.1055/s-2008-1040549
- 11. Ennever J.E. // Pediatr. Clin. N. Amer. 1986. V. 33. № 3. P. 603; https://doi.org/10.1016/S0031-3955 (16)36045-X
- 12. Lightner D.A., Reisinger M., Landen G.L. // J. Biol. Chem. 1986. V. 261. No. 13. P. 6034; https://doi.org/10.1016/S0021-9258 (17)38489-2
- 13. Taniguchi M., Lindsey J.S. // J. Photochem. Photobiol., C. 2023. V. 55. P. 100585; https://doi.org/10.1016/j.jphotochemrev.2023.100585
- 14. Lamola A.A., Flores J. // J. Amer. Chem. Soc. 1982. V. 104. № 9. P. 2530; https://doi.org/10.1021/ja00373a033
- 15. Zietz B., Gillbro T. // J. Phys. Chem. B. 2007. V. 111. № 41. P. 11997; https://doi.org/10.1021/jp073421c
- 16. Ветчинкин А.С., Уманский С.Я., Чайкина Ю.А. и др. // Хим. физика. 2022. Т. 41. № 9. С. 72; https://doi.org/10.31857/S0207401X22090102
- 17. Анфимов Д.Р., Голяк И.С., Небритова О.А. и др. // Хим. физика. 2022. Т. 41. № 10. С. 10; https://doi.org/10.31857/S0207401X22100028
- 18. Горохов В.В., Нокс П.П., Корватовский Б.Н. и др. // Хим. физика. 2023. Т. 42. № 6. С. 63; https://doi.org/10.31857/S0207401X23060055
- 19. Черепанов Д.А., Милановский Г.Е., Надточенко В.А. и др. // Хим. физика. 2023. Т. 42. № 6. С. 88; https://doi.org/10.31857/S0207401X23060043
- 20. Carreira-Blanco C., Singer P., Diller R. et al. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 7148; doi: 10.1039/c5cp06971h
- 21. Upadhyaya H.P. // J. Phys. Chem. A. 2018. V. 122. № 46. P. 9084; https://doi.org/10.1021/acs.jpca.8b09392
- 22. Pu R., Wang Z., Zhu R. et al. // J. Phys. Chem. Lett. 2023. V. 14. № 3. P. 809; https://doi.org/10.1021/acs.jpclett.2c03535
- 23. Land E.J. // Photochem. Photobiol. 1976. V. 24. № 5. P. 475; https://doi.org/10.1111/j.1751-1097.1976.tb06857.x
- 24. Плавский В.Ю., Третьякова А.И., Плавская Л.Г. и др. // Молекулярные, мембранные и клеточные основы функционирования биосистем. Сб. статей в 2 ч. Ч. 2 / Под ред. Волотовский И.Д. и др. Минск: Изд. центр БГУ, 2012. С. 71.
- 25. Sloper R.W., Truscott T.G. // Photoсhem. Photobiol. 1982. V. 35. № 5. P. 743; https://doi.org/10.1111/j.1751-1097.1982.tb02640.x
- 26. Tan K.L. // Clin. Perinatol. 1991. V. 18. № 3. P. 423; https://doi.org/10.1016/S0095-5108 (18)30506-2
- 27. Ebbesen F., Vreman H.J., Hansen T.W.R. // Intern. J. Mol. Sci. 2023. V. 24. № 1. P. 461; https://doi.org/10.3390/ijms24010461
- 28. Slusher T.M., Vreman H.J., Brearley A.M. et al. // Lancet Glob. Health. 2018. V. 6. № 10. P. e1122; http://dx.doi.org/10.1016/S2214-109X (18)30373-5
- 29. Onishi S, Itoh S, Isobe K. // Biochem. J. 1986. V. 236. № 1. P. 23; doi: 10.1042/bj2360023
- 30. Itoh S., Onishi S., Isobe K., Manabe M., Yamakawa T. // Biol. Neonate. 1987. V. 51. № 1. P. 10; https://doi.org/10.1159/000242625
- 31. Itoh S., Okada H., Kuboi T. et al. // Pediatr. Intern. 2017. V. 59. № 9. P. 959; https://doi.org/10.1111/ped.13332
- 32. Uchida Y., Morimoto Y., Uchiike T. et al. // Early Hum. Dev. 2015. V. 91. № 7. P. 381; http://dx.doi.org/10.1016/j.earlhumdev.2015.04.010
- 33. Ebbesen F., Madsen P., Støvring S. et al.. // Acta Paediatr. 2007. V. 96. № 6. C. 837; doi: 10.1111/j.1651-2227.2007.00261.x
- 34. Ebbesen F., Vandborg P.K., Donneborg M.L. // Semin. Perinatol. 2021. V. 45. № 1. P. 151358; https://doi.org/10.1016/j.semperi.2020.151358
- 35. Ebbesen F., Rodrigo-Domingo M., Moeller A.M. et al. // Pediatr. Res. 2021. V. 89. № 3. P. 598; https://doi.org/10.1038/s41390-020-0911-9
- 36. Ebbesen F., Madsen P.H., Vandborg P.K. et al. // Ibid. 2016. V. 80. № 4. P. 511; https://doi.org/10.1038/pr.2016.115
- 37. Lamola A.A. // Clin. Perinatol. 2016. V. 43. № 2. P. 259; http://dx.doi.org/10.1016/j.clp.2016.01.004
- 38. Bhutani V. K. // Pediatrics. 2011. V. 128. № 4. P. e1046; www.pediatrics.org/cgi/doi/10.1542/peds.2011-1494