RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Impact of regiodefects on polarization of ferroelectric polymers at low temperatures

PII
10.31857/S0207401X24110041-1
DOI
10.31857/S0207401X24110041
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 11
Pages
31-38
Abstract
A model is proposed to study the effect of regiodefects on the behavior of ferroelectric polymers in an electric field at low temperatures. Within the framework of the model, it is shown that there is a smooth reorientation of the dipole moments of monomers near the refiodefects, which is in agreement with the data obtained in molecular dynamics (MD) calculations. An analytical expression is obtained for the dependence of the average polarization on temperature, electric field, and concentration of regiodefects. Comparison with MD calculations allows us to estimate the bond stiffness of neighboring monomers and the induced electric field. The quantum version of the proposed model is investigated. It is shown that the ground state is singlet, and excitations can be either gapful or gapless, depending on the parity of the number of monomers between defects. There is a plateau on the zero-temperature magnetization curve.
Keywords
сегнетоэлектрические полимеры поливинилиденди-фторид региодефект
Date of publication
20.11.2024
Year of publication
2024
Number of purchasers
0
Views
53

References

  1. 1. Tasaka S., Miyasato K., Yoshikawa M. et al. // Ferroelectrics. 1984. V. 57. № 1. P. 267.
  2. 2. Tasaka S., Ohishi K., Inagaki N. // Ibid. 1995. V. 171. № 1. P. 203.
  3. 3. Wedel A., von Berlepsch H., Danz R. // Ibid. 1991. V. 120. № 1. P. 253.
  4. 4. Bae J.-H., Chang S.-H. // Funct. Compos. Struct. 2019. V. 1. № 1. P. 012003.
  5. 5. Воробьев А.О., Кульбакин Д.Е., Чистяков С.Г. и др. // Хим. физика. 2023. Т. 42. № 11. С. 9.
  6. 6. Игнатьева Л.Н., Мащенко В.А., Горбенко О.М. и др. // Хим. физика. 2023. Т. 42. № 11. С. 23.
  7. 7. Кочервинский В.В., Градов О.В., Градова М.А. // Успехи химии. 2022. Т. 91. № 11. С. RCR5037.
  8. 8. Lu S. G., Rozic B., Kutnjiak Z., et al. // Integr. Ferroelectr. 2011. V. 125. № 1. P. 176.
  9. 9. Neese B., Chu B., Lu S-G. et al. // Science. 2008. V. 321. № 5890. P. 821.
  10. 10. Basso V., Russo F., Gerard J.-F. et al. // Appl. Phys. Lett. 2013. V. 103. № 20. P. 202904.
  11. 11. Sultanov V.I., Atrazhev V.V., Dmitriev D.V. et al. // Macromolecules. 2021. V. 54. № 8. P. 3744.
  12. 12. Sultanov V.I., Atrazhev V.V., Dmitriev D.V. // J. Polym. Sci. 2023. V. 61. № 18. P. 2091.
  13. 13. Anousheh N., Godey F., Soldera A. // J. Polym. Sci., Part A: Polym. Chem. 2017. V. 55. № 3. P. 419.
  14. 14. Sultanov V. I., Atrazhev V. V., Dmitriev D. V. // J. Phys. Chem. B. 2024. V. 128. № 26. P. 6376.
  15. 15. Лихачев В.Н., Виноградов Г.А., Эрихман Н.С. //Хим. физика. 2020. Т. 39. № 6. С. 3.
  16. 16. Takahashi M., Nakamura H., Sachdev S. // Phys. Rev. B. 1996. V. 54. № 2. P. R744.
  17. 17. Marko J.F., Siggia E.D. // Macromolecules. 1995. V. 28. № 26. P. 8759.
  18. 18. Кривнов В.Я., Дмитриев Д.В. // Хим. физика. 2021. Т. 40. № 2. С. 29.
  19. 19. Haldane F.D.M. // Phys. Rev. Lett 1983. V. 50. № 15. P. 1153.
  20. 20. Chen W., Hida K., Sanctuary B.C. // J. Phys. Jpn. 2000. V. 69. № 10. P. 3414.
  21. 21. Ливанова Н.В., Правада Е.С., Ковалева Л.А., Попов А.А. // Хим. физика. 2023. Т. 42. № 5. С. 43.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library