RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Study of thermal denaturation of the plasminogen molecule under induced oxidation

PII
10.31857/S0207401X24110058-1
DOI
10.31857/S0207401X24110058
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 11
Pages
39-46
Abstract
The article is devoted to the study of thermal denaturation of the plasminogen molecule during induced oxidation by hypochlorite in a concentration range (30, 62.5, 125 and 250 µM). By differential scanning calorimetry, it was determined that in the presence of an oxidizing agent, the enthalpy of denaturation of the plasminogen molecule decreases. This is most noticeable for the peak showing the melting of the K4-K5 domains. These results are consistent with previously obtained data on the oxidative modification of amino acid residues of plasminogen treated with different concentrations of hypochlorite using the HPLC-MS/MS method. Taken together, these data and the results of previous studies indicate that the structure of Glu-plasminogen is adapted to moderate HOCl-induced oxidation.
Keywords
плазмин(оген) окисление термическая денатурация дифференциальная сканирующая микрокалориметрия
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Miles L. // Trends in Cardiovascular Medicine. 2003. V. 13. № 1. P. 21; doi: 10.1016/S1050-1738(02)00190-1
  2. 2. De Souza L.R., Melo P.M., Paschoalin T. et al. // Biochem. and Biophys. Res. Commun.. 2013. V. 433, № 3. P. 333. doi: 10.1016/j.bbrc.2013.03.001
  3. 3. McKenna S.M., Davies K.J.A. // Biochem. J. 1988. V. 254. № 3. P. 685; doi: 10.1042/bj2540685
  4. 4. Ulfig A., Leichert L.I. // Cell. Mol. Life Sci. 2021. V. 78. № 2. P. 385; doi: 10.1007/s00018-020-03591-y
  5. 5. Vasilyeva A. Yurina L., Ivanov V. et al. // Intern. J. of Biolog. Macromol. 2022. V. 206. P. 64; doi::10.1016/j.ijbiomac.2022.02.128
  6. 6. Deutsch D.G., Mertz E.T. // Science. 1970. V. 170. № 3962. P. 1095; doi: 10.1126/science.170.3962.1095
  7. 7. Laemmli U.K. // Nature. 1970. V. 227. № 5259. P. 680; doi: 10.1038/227680a0
  8. 8. White N.J., Wang Y., Fu X. et al. // Free Radical Biol. and Med. 2016. V. 96. P. 181; doi: 10.1016/j.freeradbiomed.2016.04.023
  9. 9. Васильева А.Д., Юрина Л.В., Азарова Д.Ю. и др. // Хим. физика. 2022. Т. 41. № 2. C. 51; doi: 10.31857/S0207401X220201455
  10. 10. Юрина Л.В., Васильева А.Д., Евтушенко Е.Г. и др. // Хим. физика. 2024. V. 43. № 4. С. 81.
  11. 11. Lau W.-H., White N.J., Yeo T.-W. et al. // Sci. Rep. 2021. V. 11. № 1. 15691; doi: 10.1038/s41598-021-94401-3
  12. 12. Шайтан К.В. // Хим. физика. 2023. Т. 42. № 6. С. 40; doi: 10.31857/S0207401X23060109
  13. 13. Васильева А.Д., Юрина Л.В., Щеголихин А.Н. и др. // Докл. АН. 2019. Т. 488. №5. С. 560; doi: 10.31857/S0869-56524885560-566
  14. 14. Шишкина Л.Н., Козлов М.В., Константинова Т.В. и др. // Хим. физика. 2023. Т. 42. № 1. С. 28; doi: 10.31857/S0207401X23010107
  15. 15. Castellino F.J., Ploplis V.A., Powell J.R., Strickland D.K. // J. Biol. Chem. 1981. V. 256. № 10. P. 4778.
  16. 16. Novokhatny V.V., Kudinov S.A., Privalov P.L. // J. of Mol. Biol. 1984. V. 179. № 2. P. 215; doi: 10.1016/0022-2836(84)90466-2
  17. 17. Freire E., Biltonen R.L. // Biopolymers. 1978. V. 17. № 2. P. 481; doi: 10.1002/bip.1978.360170213
  18. 18. Розенфельд М.А., Юрина Л.В., Васильева А.Д. // Успехи соврем. биологии. 2021. Т. 141. № 4. C. 315; doi: 10.31857/S0042132421040050
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library