RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Physical and chemical analysis of the lipofuscin granule bisretinoid photodestruction products from retinal pigment epithelium cells of the eye

PII
10.31857/S0207401X24110114-1
DOI
10.31857/S0207401X24110114
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 11
Pages
88-101
Abstract
In this work, the mechanisms of formation of the bisretinoid oxidation products in lipofuscin granules isolated from the retinal pigment epithelium cells of the human eye have been studied. The physico-chemical characteristics of the bisretinoid photooxidation products are described. The methods of IR spectroscopy, Raman spectroscopy, fluorescence spectroscopy, scanning confocal microscopy, time-of-flight mass spectrometry of secondary ions (TOF.SIMS) and HPLC were used for the study. The properties of the products of photooxidation and degradation of the fluorophore of lipofuscin granules, including synthetic N-retinylidene-N-retinylethanolamine (A2E), are described in detail. It has been shown that the products of oxidative degradation of lipofuscin granules are similar to the products of photooxidation of the main bisretinoid of lipofuscin granules – A2E. These data are important both for understanding the mechanisms of formation of cytotoxic products in lipofuscin granules and for establishing their chemical nature.
Keywords
бисретиноиды окислительная деградация флуорофоры липофусциновые гранулы ретинальный пигментный эпителий
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Zetterberg M. // Maturitas. 2016. V. 83. P. 19.
  2. 2. Nivison-Smith L., Milston R., Madigan M. et al. // Optom. Vis. Sci. 2014. V. 91. № 8. P. 832.
  3. 3. Fisher C.R., Ferrington D.A. // Invest. Ophthalmol. Visual Sci. 2018. V. 59. № 4. P. 41.
  4. 4. Петронюк Ю.С., Трофимова Н.Н., Зак П.П. и др. // Хим. физика. 2022. Т. 41. № 2. С. 27.
  5. 5. Ruan Y., Jiang S., Gericke A. // Intern. J. Mol. Sci. 2021. V. 22. № 3. P. 1296. https://doi.org/10.3390/ijms22031296
  6. 6. Ларин И. К. // Хим. физика. 2023. T. 42. № 1. C. 84.
  7. 7. Holz F.G., Schütt F., Kopitz J. et al. // Invest. Ophthalmol. Visual Sci. 1999. V. 40. P. 737.
  8. 8. Adler IV L., Chen C., Koutalos Y. // Exp. Eye Res. 2017. V. 155. P. 121.
  9. 9. Boulton M., Dontsov A., Jarvis-Evans J., Ostrovsky M. et al. // J. Photochem. Photobiol. B: Biol. 1993. V. 19. № 3. P. 201; https://doi.org/10.1016/1011-1344 (93)87085-2
  10. 10. Lamb L.E., Simon J.D. // Photochem. Photobiol. 2004. V. 79. № 3. P. 127.
  11. 11. Recent Advances in Retinal Degeneration (Advances in Experimental Medicine and Biology, 613) NY: Springer, 2008. P. 393; https://doi.org/10.1007/978-0-387-74904-4_46
  12. 12. Wu Y., Yanase E., Feng X. et al. // Proc. Natl. Acad. Sci. USA. 2010. V. 107. P. 7275.
  13. 13. Ben-Shabat S., Itagaki Y., Jockusch S. et al. // Angew. Chem. Int. Ed. 2002. V. 41. P. 814.
  14. 14. Feldman T.B., Yakovleva M.A., Arbukhanova P.M., Borzenok S.A., Kononikhin A.S., Popov I.A., Nikolaev E.N., Ostrovsky M.A. // Anal. Bioanal. Chem. 2015. V. 407. P. 1075.
  15. 15. Yakovleva M.A., Dontsov A.E., Trofimova N.N., Sakina N.L., Kononikhin A.S., Aybush A.V., Feldman T.B., Ostrovsky M.A. // Intern. J. Mol. Sci. 2022. V. 23. № 1. P. 222; https://doi.org/10.3390/ijms23010222
  16. 16. Feldman T.B., Yakovleva M.A., Larichev A.V. Arbukhanova P.M., Radchenko A.Sh., Borzenok S.A., Kuzmin V.A., Ostrovsky M.A. // Eye. 2018. V. 32. P. 144; https://doi.org/10.1038/s41433-018-0109-0
  17. 17. Holz F.G., Schmitz-Valckenberg S., Spaide R.F. et al. // Atlas of Fundus Autofluorescence Imaging. Berlin-Heidelberg: Springer–Verlag. 2007. P. 342.
  18. 18. Schweitzer D., Gaillard E.R., Dillon J. et al. // Invest. Ophthalmol. Visual Sci. 2012. V. 53. № 7. P. 3376; https://doi.org/10.1167/iovs.11-8970
  19. 19. Schweitzer D., Quick S., Schenke S. et al. // Ophthalmology. 2009. V. 106. № 8. P. 714; https://doi.org/10.1007/s00347-009-1975-4
  20. 20. Folch J., Lees M., Sloane Stanley G.H. // J. Biol. Chem. 1957. V. 226. № 1. P. 497.
  21. 21. Parish C.A., Hashimoto M., Nakanishi K. et al. // Proc. Natl. Acad. Sci. USA. 1998. V. 95. P. 14609.
  22. 22. Dontsov A., Yakovleva M., Trofimova N., Sakina N., Gulin A., Aybush A., Gostev F., Vasin A., Feldman T., Ostrovsky M. // Intern. J. Mol. Sci. 2022. V. 23. № 3. P. 1534; https://doi.org/10.3390/ijms23031534
  23. 23. Wang Z., Keller L.M.M., Dillon J. et al. // Photochem. Photobiol. 2006. V. 82. P. 1251.
  24. 24. Feldman T., Ostrovskiy D., Yakovleva M., Dontsov A., Borzenok S., Ostrovsky M. // Intern. J. Mol. Sci. 2022. V. 23. № 20. P. 12234; https://doi.org/10.3390/ijms232012234
  25. 25. Разумов В.Ф. // Хим. физика. 2023. Т. 42. № 2. С. 14.
  26. 26. Яковлева М.А., Радченко А.Ш., Костюков А.А. и др. // Хим. физика. 2022. T. 41. № 2. С. 20.
  27. 27. Yakovleva M.A., Radchenko A.Sh., Feldman T.B., Kostyukov A.A., Arbukhanova P.M., Borzenok S.A., Kuzmin V.A., Ostrovsky M.A. // Photochem. Photobiol. Sci. 2020. V. 19. P. 920; https://doi.org/10.1039/C9PP00406H
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library