RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Parameters of thermal radiation of a hydrogen flame

PII
10.31857/S0207401X25070109-1
DOI
10.31857/S0207401X25070109
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 7
Pages
100-105
Abstract
High attention is now devoted to a fire safety of objects with a presence of hydrogen due to a rapid development of a hydrogen energetics. An evaluation of a risk for the objects of hydrogen energetics is one of the key tasks for a such development. A decision of this task requires an information on a radiation intensity of hydrogen flames. But this information published in literature is often non-complete and sometimes contradictive. Therefore this study is aimed on a review of literature sources published in Russian and international journals. The main value required for the fire risk evaluation is a surface radiation intensity of hydrogen flames. In this study four types of the flames were considered: gaseous jet flame; jet flame of liquid hydrogen; pool fire of liquid hydrogen; fireball. It was noted that surface thermal radiation intensity of the hydrogen flames is remarkably lower in comparison with hydrocarbon flames. The surface thermal radiation intensity Ef of a hydrogen gaseous jet flame cfn be accepted to be equal 33 kW/m2 in the fire risk calculations. The Ef value for the hydrogen fireball can be accepted to be equal 330 kW/m2. The surface thermal radiation intensity for combustion of liquid hydrogen (both for the jet flame and the pool fire) can be accepted to be equal 80 kW/m2.
Keywords
водородные пламена тепловое излучение факел огненный шар пожар пролива
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Гордиенко Д.М., Шебеко Ю.Н. // Безопасность труда в промышленности. 2022. № 2. С.7.
  2. 2. Шебеко Ю.Н. // Пожарная безопасность. 2020. №4. С. 36.
  3. 3. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2023. Т. 42. № 3. С.70.
  4. 4. Трошин К.Я., Рубцов Н.М., Цветков Г.И., Черныш В.И., Шамшин И.О. // Хим. физика. 2023. Т. 42. № 3. С.79.
  5. 5. Сумской С.И., Софьин А.С., Зайнетдинов С.Х., Лисанов М.В., Агапов А.А. // Хим. физика. 2023. Т. 42. № 3. С.63.
  6. 6. Васильев А.А., Васильев В.А. // Физика горения и взрыва. 2024. Т. 60. № 5. С.30.
  7. 7. Ekoto I.W., Houf W.G., Ruggles A.J., Creitz L.W., Li J.X. // Proc. 9th Intern. Pipeline Conf. IPC. Calgary, Alberta, Canada (IPC 2012-90535), 2012.
  8. 8. Schefer R.W., Houf W.G., Bourne B., Colton J. // Int. J. Hydrogen Energy. 2006. V. 31. P. 1332.
  9. 9. Schefer R.W., Houf W.G., Williams T.C., Bourne B., Colton J. // Ibid. 2007. V. 32. P. 2081.
  10. 10. Studer E., Jamous D., Jallais S. et al. // Ibid. 2009. V. 34. P. 9611.
  11. 11. Lowesmith D.J., Hankinson G. // Process Saf. Environ. Prot. 2012. V. 90. P. 108.
  12. 12. Lowesmith D.J., Hankinson G. // Ibid. 2013. V.91. P.101.
  13. 13. Wang C.J., WenJ.X., Chen Z.B., Dembele S. // Int. J. Hydrogen Energy. 2014. V. 39. P. 20560.
  14. 14. Houf W., Schefer R. // Ibid. 2007. V. 32. P. 136.
  15. 15. Gomez-Mares M., Zarate L., Casal J. // Fire Safety J. 2008. V. 43. № 8. P.583.
  16. 16. Карпов В.Л. // Пожаровзрывобезопасность. 1999. Т. 8. № 5. С.38.
  17. 17. Friedrich A., Breitung W., Stern G. et al. // Int. J. Hydrogen Energy. 2012. V. 37. P. 17589.
  18. 18. Hecht E.S., Chowdhury B.R. // Ibid. 2021. V. 46. P. 12320.
  19. 19. Hall J.E., Hooker P., Willoughby D. // Ibid. 2014. V. 39. P. 20547.
  20. 20. NFPA 2: Hydrogen Technologies Code. National Fire Protection Association, 2023.
  21. 21. Zalosh R. // Proc. 5th Int. Sem. on Fire and Explosion Hazards. Edinburgh: University of Edinburg, 2008. P.149.
  22. 22. Ustolin F., Paltrinieri N., Landucci G. // J. Loss Prevention Proc. Ind.. 2020. V.68. P.104323.
  23. 23. Wingerden K., Kluge M., Karim A., Ustolin F., Paltni­eri N. // Chem. Eng. Trans. 2022. V. 90. P. 547.
  24. 24. Bernardy C., Habib A.K., Kluge M. et al. // J. Loss Prevention Proc. Ind. 2025. V. 94. P. 105491.
  25. 25. Betteridge S., Philips L. Large scale pressurized LNG BLEVE experiments. Symposium series №160. Hazards 25. Shell, 2015.
  26. 26. Roberts A.F. // Fire Safety J. 1982. V. 4. P. 197.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library