- PII
- 10.31857/S0207401X25090031-1
- DOI
- 10.31857/S0207401X25090031
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 44 / Issue number 9
- Pages
- 35-54
- Abstract
- A mathematical model of nucleation center formation during heating of a particle of gel fuel (oil-filled cryogel based on an organic polymer thickener) in a high-temperature air environment has been developed. The model describes a group of interrelated physicochemical processes in the condensed phase and gaseous medium (inert heating, melting, separation of liquid components, their evaporation) under conditions of radiant-convective heating with source temperature variation in the range of 673–1073 K. Comparison of numerical simulation results with experimental data obtained under identical conditions has made it possible to establish the applicability of the developed mathematical model and numerical solution algorithm for predicting the achievement of dispersion conditions for a drop of gel fuel melt.
- Keywords
- гелеобразное топливо частица разогретый воздух математическая модель нуклеация диспергирование
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 4
References
- 1. Smirnov N.N. // Acta Astronaut. 2022. V. 194. P. 353. https://doi.org/10.1016/j.actaastro.2022.02.028
- 2. Smirnov N.N. // Ibid. 2023. V. 204. № 9. P. 679. https://doi.org/10.1016/j.actaastro.2022.10.028
- 3. Brito N.L., Dee J.C., Seminari S. // Congress Proc. IAC CyberSpace. 2020. Article 57292.
- 4. Зюзин И.Н., Гудкова И.Ю., Лемперт Д.Б. // Хим. физика. 2025. Т. 44. № 2. С. 54. https://doi.org/10.31857/S0207401X25020056
- 5. Зюзин И.Н., Гудкова И.Ю., Лемперт Д.Б. // Хим. физика. 2025. Т. 44. № 4. С. 54. https://doi.org/10.31857/S0207401X25040062
- 6. Лемперт Д.Б., Игнатьева Е.Л., Степанов А.И., Дашко Д.В., Казаков А.И. и др. // Хим. физика. 2024. Т. 43. № 1. С. 66. https://doi.org/10.31857/S0207401X24010084
- 7. Ciezki H.K., Hürttlen J., Naumann K.W., Negri M., Ramsel J. et al.// Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH, USA. 2014. https://doi.org/10.2514/6.2014-3794
- 8. Natan B., Rahimi S. // Intern. J. Energetic Mater. Chem. Propul. 2002. V. 5. № 1–6. P. 172. https://doi.org/10.1615/IntJEnergeticMaterials ChemProp.v5.i1-6.200
- 9. Feng S., He B., He H., Su L., Hou Z. et al. // Fuel. 2013. V. 111. P. 367. https://doi.org/10.1016/j.fuel.2013.03.071
- 10. Mishra D.P., Patyal A., Padhwal M. // Ibid. 2011. V. 90. № 5. P. 1805. https://doi.org/10.1016/j.fuel.2010.12.021
- 11. Glushkov D.O., Paushkina K.K., Pleshko A.O., Vysokomorny V.S. // Ibid. 2022. V. 313. Article 123024. https://doi.org/10.1016/j.fuel.2021.123024
- 12. Padwal M.B., Natan B., Mishra D.P. // Prog. Energy Combust. Sci. 2021. V. 83. Article 100885. https://doi.org/10.1016/j.pecs.2020.100885
- 13. Глушков Д.О., Паушкина К.К., Плешко А.О. // Хим. физика. 2023. Т. 42. № 2. С. 37. https://doi.org/10.31857/S0207401X23020073
- 14. Nachmoni G., Natan B. // Combust. Sci. Technol. 2000. V. 156. № 1. P. 139. https://doi.org/10.1080/00102200008947300
- 15. Arnold R., Anderson W. // Proc. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida, USA. 2010. https://doi.org/10.2514/6.2010-421
- 16. Glushkov D.O., Paushkina K.K., Pleshko A.O., Yanovsky V.A. // Acta Astronaut. 2023. V. 202. P. 637. https://doi.org/10.1016/j.actaastro.2022.11.027
- 17. Glushkov D.O., Kuznetsov G.V., Nigay A.G., Yashutina O.S. // J. Energy Inst. 2019. V. 92. № 6. P. 1944. https://doi.org/10.1016/j.joei.2018.10.017
- 18. Kunin A., Natan B., Greenberg J.B. // J. Propul. Power. 2010. V. 26. № 4. P. 765. https://doi.org/10.2514/1.41705
- 19. He B., Nie W., He H. // Energy Fuels. 2012. V. 26. № 11. Article 6627. https://doi.org/10.1021/ef300990d
- 20. Шумова В.В., Поляков Д.Н., Василяк Л.М. // Хим. физика. 2023. Т. 42. № 8. С. 82. https://doi.org/10.31857/S0207401X23080095
- 21. Solomon Y., Natan B., Cohen Y. // Combust. and Flame. 2009. V. 156. № 1. P. 261. https://doi.org/10.1016/j.combustflame.2008.08.008
- 22. Vershinina K.Y., Glushkov D.O., Nigay A.G., Yanovsky V.A., Yashutina O.S. // Ind. Eng. Chem. Res. 2019. V. 58. № 16. Article 6830. https://doi.org/10.1021/acs.iecr.9b00580
- 23. Glushkov D.O., Nigay A.G., Yanovsky V.A., Yashutina O.S. // Energy Fuels. 2019. V. 33. № 11. Article 11812. https://doi.org/10.1021/acs.energyfuels.9b02300
- 24. Sazhin S.S., Bar-Kohany T., Nissar Z., Antonov D., Strizhak P.A. et al. // Intern. J. Heat Mass Transf. 2020. V. 161. Article 120238. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120238
- 25. Glushkov D.O., Nigay A.G., Yashutina O.S. // Ibid. 2018. V. 127, Part C. P. 1203. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.103
- 26. Glushkov D.O., Kosintsev A.G., Kuznetsov G.V., Vysokomorny V.S. // Fuel. 2021. V. 291. Article 120172. https://doi.org/10.1016/j.fuel.2021.120172
- 27. Vargaftik N.B., Vinogradov Y.K., Yargin V.S. Handbook of thermophysical properties of liquids and gases. Third Ed. New York: Begell House, 1996.
- 28. Baird Z.S., Uusi-Kyyny P., Järvik O., Oja V., Alopaeus V. // Ind. Eng. Chem. Res. 2018. V. 57. № 14. Article 5128. https://doi.org/10.1021/acs.iecr.7b05018
- 29. Журавлев А.А., Хвостов А.А., Иванов А.В., Журавлев Е.А. // Актуальные направления научных исследований XXI века: теория и практика (Воронеж). 2017. Т. 5. № 8-1 (34-1). С. 163.
- 30. Abramzon B., Sazhin S. // Fuel. 2006. V. 85. № 1. P. 32. https://doi.org/10.1016/j.fuel.2005.02.027
- 31. Башта Т.М. Гидравлические приводы летательных аппаратов. 4-е изд., перераб. и доп. М.: Машиностроение, 1967.
- 32. Khorolskyi O.V., Rudenko O.P. // Ukr. J. Phys. 2015. V. 60. № 9. P. 880. https://doi.org/10.15407/ujpe60.09.0880
- 33. Owens J.C. // Appl. Opt. 1967. V. 6. № 1. P. 51. https://doi.org/10.1364/AO.6.000051
- 34. Lindsay A.L., Bromley L.A. // Ind. Eng. Chem. 1950. V. 42. № 8. P. 1508. https://doi.org/10.1021/ie50488a017
- 35. Glushkov D.O., Kosintsev A.G., Kuznetsov G.V., Vysokomorny V.S. // Acta Astronaut. 2021. V. 178. P. 272. https://doi.org/10.1016/j.actaastro.2020.09.004
- 36. Davletshina T.A., Cheremisinoff N.P. Fire and Explosion Hazards Handbook of Industrial Chemicals. Westwood, NJ, USA: Noyes Publ., 1998. Ch. 3. https://doi.org/10.1016/B978-0-8155-1429-9.50008-5
- 37. Tripathi A., Vinu R. // Lubricants (Switzerland). 2015. V. 3. № 1. P. 54. https://doi.org/10.3390/lubricants3010054
- 38. Betelin V.B., Smirnov N.N., Nikitin V.F., Dushin V.R., Kushnirenko A.G. et al. // Acta Astronaut. 2012. V. 70. P. 23. https://doi.org/10.1016/j.actaastro.2011.06.021
- 39. Celik I.B., Ghia U., Roache P.J., Freitas C.J., Coleman H. et al. // J. Fluids Eng. 2008. V. 130. № 7. Article 0780011. https://doi.org/10.1115/1.2960953
- 40. Fugmann H., Schnabel L., Frohnapfel B. // Numer. Heat Transf., Part A: Appl. 2019. V. 75. № 1. P. 1. https://doi.org/10.1080/10407782.2018.1562741
- 41. Glushkov D.O., Paushkina K.K., Shabardin D.P., Strizhak P.A., Gutareva N.Y. // J. Environ. Manag. 2019. V. 231. P. 896. https://doi.org/10.1016/j.jenvman.2018.10.067
- 42. Antonov D.V., Kuznetsov G.V., Misyura S.Y., Strizhak P.A. // Exp. Therm. Fluid Sci. 2019. V. 109. Article 109862. https://doi.org/10.1016/j.expthermflusci.2019.109862
- 43. Faik A.M.D., Zhang Y. // Fuel. 2018. V. 221. P. 89. https://doi.org/10.1016/j.fuel.2018.02.054