RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Fluorescent photo-switchable systems

PII
305185-690176-1
DOI
10.7868/30176-1
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 6
Pages
3-29
Abstract
Fluorescent photoswitchable systems (FPSS) are organic molecular and organic-inorganic hybrid nanoscale systems that combine the properties of photochromes and fluorophores, i.e. the ability to change their fluorescent properties, intensity and/or emission spectrum under the action of light. The structure and mechanisms of action of FPSS of different types are considered, examples of application of FPSS in super-resolution microscopy, for visualisation of biological and inorganic nano-objects, recording of optical information, for anti-counterfeiting, as photonic molecular logic gates are given.
Keywords
фотохромизм флуоресценция супрамолекулярная химия тушение сенсибилизация перенос энергии перенос электрона сверхразрешающая микроскопия молекулярный логический вентиль
Date of publication
16.06.2025
Year of publication
2025
Number of purchasers
0
Views
82

References

  1. 1. Bouas-Laurent H., Dürr H. // Org. Photochrom., Pure Appl. Chem. 2001. V. 73. P. 639. https://doi.org/10.1351/pac200173040639
  2. 2. Molecular Photoswitches: Chemistry, Properties, and Applications / Ed. Pianowski Z.L. Wiley-VCH GmbH, 2022. https://doi.org/10.1002/9783527827626
  3. 3. Braslavsky S.E. // Pure Appl. Chem. 2007. V. 79. P. 293. DOI: 10.1351/pac200779030293
  4. 4. Lakowicz J.R. Principles of Fluorescence Spectroscopy. 3rd ed. N.Y.: Springer, 2006. https://doi.org/10.1007/978-0-387-46312-4
  5. 5. Parthenopoulos D.A., Rentzepis P.M. // Science. 1989. V. 245. P. 843. https://doi.org/10.1126/science.245.4920.843
  6. 6. Fukaminato T., Doi T., Tamaoki N. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 4984. https://doi.org/10.1021/ja110686t
  7. 7. Dvornikov A.S., Walker P., Rentzepis P.M. // J. Phys. Chem. A. 2009. V. 113. P. 13633. https://doi.org/10.1021/jp905655z
  8. 8. Ширинян В.З., Лоншаков Д.В., Львов А.Г., Краюшкин М.М. // Успехи химии. 2013. Т. 82. С. 511. https://doi.org/10.1070/RC2013v082n06ABEH004339
  9. 9. Olesinska-Monch M., Deo C. // Chem. Commun. 2023. V. 59. P. 660. https://doi.org/10.1039/d2cc05870g
  10. 10. Nevskyi O., Sysoiev D., Dreier J. et al. // Small. 2018. V. 14. P. 1703333. https://doi.org/10.1002/smll.201703333
  11. 11. Biteen J., Willets K.A. // Chem. Rev. 2017. V. 117. P. 7241. https://doi.org/10.1021/acs.chemrev.7b00242
  12. 12. Chen T., Dong B., Chen K. et al. // Ibid. P. 7510. https://doi.org/10.1021/acs.chemrev.6b00673
  13. 13. Irie M., Fukaminato T., Matsuda K., Kobatake S. // Ibid. 2014. V. 114. P. 12174. https://doi.org/10.1021/cr500249p
  14. 14. Kim D., Park S.Y. // Adv. Optical Mater. 2018. P. 1800678. https://doi.org/10.1002/adom.201800678
  15. 15. Будыка М.Ф. // Успехи химии. 2017. Т. 86. С. 181. https://doi.org/10.1070/RCR4657
  16. 16. Erbas-Cakmak S., Kolemen S., Sedgwick A.C. et al. // Chem. Soc. Rev. 2018. V. 47. P. 2228. https://doi.org/10.1039/c7cs00491e
  17. 17. Andreasson J., Pischel U. // Coord. Chem. Rev. 2021. V. 429. P. 213695. https://doi.org/10.1016/j.ccr.2020.213695
  18. 18. Mockl L., Lamb D.C., Brauchle C. // Angew. Chem. Int. Ed. 2014. V. 53. P. 13972. https://doi.org/10.1002/anie.201410265
  19. 19. Blom H., Widengren J. // Chem. Rev. 2017. V. 117. P. 7377. https://doi.org/10.1021/acs.chemrev.6b00653
  20. 20. von Diezmann L., Shechtman Y., Moerner W.E. // Ibid. P. 7244. https://doi.org/10.1021/acs.chemrev.6b00629
  21. 21. Deschout H., Lukes T., Sharipov A. et al. // Nat. Commun. 2016. V. 7. P. 13693. https://doi.org/10.1038/ncomms13693
  22. 22. Prakash K., Diederich B., Heintzmann R., Schermel­leh L. // Phil. Trans. R. Soc. A. 2022. V. 380. P. 20210110. https://doi.org/10.1098/rsta.2021.0110
  23. 23. Balzarotti F., Eilers Y., Gwosch K.C. et al. // Science. 2017. V. 355. P. 606. https://doi.org/10.1126/science.aak9913
  24. 24. Schmidt R., Weihs T., Wurm C.A. et al. // Nat. Commun. 2021. V. 12. P. 1478. https://doi.org/10.1038/s41467-021-21652-z
  25. 25. Hauser M., Wojcik M., Kim D. et al. // Chem. Rev. 2017. V. 117. P. 7428. https://doi.org/10.1021/acs.chemrev.6b00604
  26. 26. Roubinet B., Weber M., Shojaei H. et al. // J. Am. Chem. Soc. 2017. V. 139. P. 6611. https://doi.org/10.1021/jacs.7b00274
  27. 27. Irie M., Morimoto M. // Bull. Chem. Soc. Jpn. 2018. V. 91. P. 237. https://doi.org/10.1246/bcsj.20170365
  28. 28. Wu Y., Zhu Y., Yao C. et al. // J. Mater. Chem. C. 2023. V. 11. P. 15393. https://doi.org/10.1039/d3tc02383d
  29. 29. Heilemann M., Dedecker P., Hofkens J., Sauer M. // Laser Photo. Rev. 2009. V. 3. P. 180. https://doi.org/10.1002/lpor.200810043
  30. 30. Fukaminato T., Ishida S., Metivier R. // NPG Asia Mater. 2018. V. 10. P. 859. https://doi.org/10.1038/s41427-018-0075-9
  31. 31. Zhong W., Shang L. // Chem. Sci. 2024. V. 15. P. 6218. https://doi.org/10.1039/d4sc00114a
  32. 32. Huang F., Anslyn E.V. // Chem. Rev. 2015. V. 115. P. 6999. https://doi.org/10.1021/acs.chemrev.5b00352
  33. 33. Furstenberg A., Heilemann M. // Phys. Chem. Chem. Phys. 2013. V. 15. P. 14919. https://doi.org/10.1039/c3cp52289j
  34. 34. Kortekaas L., Browne W.R. // Chem. Soc. Rev. 2019. V. 48. P. 3406. https://doi.org/10.1039/c9cs00203k.
  35. 35. Hu D., Tian Z., Wu W., Wan W., Li A.D.Q. // J. Am. Chem. Soc. 2008. V. 130. P. 15279. https://doi.org/10.1021/ja805948u
  36. 36. Mandal M., Banik D., Karak A., Manna S.K., Maha­patra A.K. // ACS Omega. 2022. V. 7. P. 36988. https://doi.org/10.1021/acsomega.2c04969
  37. 37. Irie M. // Chem. Rev. 2000. V. 100. P. 1685. https://doi.org/10.1021/cr980069d
  38. 38. Lvov A.G., Khusniyarov M.M., Shirinian V.Z. // J. Photochem. Photobiol. C: Photochem. Rev. 2018. V. 36. P. 1. https://doi.org/10.1016/j.jphotochemrev.2018.04.002
  39. 39. Matsuda K., Irie M. // J. Photochem. Photobiol., C. 2004. V. 5. P. 169. https://doi.org/10.1016/j.jphotochemrev.2004.07.003
  40. 40. Li Z., Zeng X., Gao C. et.al. // Coord. Chem. Rev. 2023. V. 497. P. 215451. https://doi.org/10.1016/j.ccr.2023.215451
  41. 41. Fukaminato T. // J. Photochem. Photobiol., C. 2011. V. 12. P. 177. https://doi.org/10.1016/j.jphotochemrev.2011.08.006
  42. 42. Pang S.C., Hyun H., Lee S. et.al. // Chem. Commun. 2012. V. 48.P. 3745. https://doi.org/10.1039/C2CC30738C
  43. 43. Jeong Y.-C., Yang S.I., Ahn K.-H., Kim E. // Ibid. 2005. P. 2503. https://doi.org/10.1039/B501324K
  44. 44. Jeong Y.-C., Yang S.I., Kim E., Ahn K.-H. // Tetrahedron. 2006. V. 62. P. 5855. https://doi.org/10.1016/j.tet.2006.04.029
  45. 45. Jeong Y.-C., Park D.G., Lee I.S., Yang S.I., Ahn K.-H. // J. Mater. Chem. 2009. V. 19. P. 97. https://doi.org/10.1039/b814040e
  46. 46. Taguchi M., Nakagawa T., Nakashima T., Kawai T. // Ibid. 2011. V. 21. P. 17425. https://doi.org/10.1039/c1jm12993g
  47. 47. Kashihara R., Morimoto M., Ito S., Miyasaka H., Irie M. // J. Am. Chem. Soc. 2017. V. 139. P. 16498. https://doi.org/10.1021/jacs.7b10697
  48. 48. Takagi Y., Morimoto M., Kashihara R. et. al. // Tetra­hedron. 2017. V. 73. P. 4918. https://doi.org/10.1016/j.tet.2017.03.040
  49. 49. Nevskyi O., Sysoiev D., Oppermann A., Huhn T., Woll D. // Angew. Chem. Int. Ed. 2016. V. 55. P. 12698. https://doi.org/10.1002/anie.201606791
  50. 50. Roubinet B., Bossi M.L., Alt P. et. al. // Ibid. P. 15429. https://doi.org/10.1002/anie.201607940
  51. 51. Uno K., Bossi M.L., Belov V.N., Irie M., Hell S.W. // Chem. Commun. 2020. V. 56. P. 2198. https://doi.org/10.1039/c9cc09390g
  52. 52. Nakagawa T., Miyasaka Y., Yokoyama Y. // Ibid. 2018. V. 54. P. 3207. https://doi.org/10.1039/c8cc00566d
  53. 53. Andresen M., Wahl M.C., Stiel A.C. et.al. // Proc. Natl Acad. Sci. USA. 2005. V. 102. P. 13070. https://doi.org/10.1073/pnas.0502772102
  54. 54. Grotjohann T., Testa I., Reuss M. et.al. // eLife 2012, 1, e00248. https://doi.org/10.7554/eLife.00248
  55. 55. Grotjohann T., Testa I., Leutenegger M. et.al. // Nature. 2011. V. 478. P. 204. https://doi.org/10.1038/nature10497
  56. 56. Liu G., Leng J., Zhou Q. et.al. // Dyes Pigm. 2022. V. 203. P. 110361. https://doi.org/10.1016/j.dyepig.2022.110361
  57. 57. Будыка М.Ф., Поташова Н.И., Гавришова Т.Н., Ли В.М. // Рос. нанотехнол. 2012. Т. 7. № 5–6. С. 89. https://doi.org/10.1134/S1995078012030032
  58. 58. de Silva A.P., Uchiyama S. // Nat. Nanotechnol. 2007. V. 2. P. 399. https://doi.org/10.1038/nnano.2007.188
  59. 59. Szacilowski K. // Chem. Rev. 2008. V. 108. P. 3481. https://doi.org/10.1021/cr068403q
  60. 60. Будыка М.Ф., Поташова Н.И., Гавришова Т.Н., Ли В.М. // Химия высоких энергий. 2012. Т. 46. С. 369. https://doi.org/10.1134/S0018143912040054
  61. 61. Budyka M.F., Gavrishova T.N., Li V.M., Potashova N.I., Ushakov E.N. // ChemistrySelect. 2021. V. 6. P. 3218. https://doi.org/10.1002/slct.202004721.
  62. 62. Budyka M.F., Gavrishova T.N., Li V.M., Potashova N.I., Fedulova J.A. // Spectrochim. Acta, Part A. 2022. V. 267. P. 120565. https://doi.org/10.1016/j.saa.2021.120565.
  63. 63. Budyka M.F., Fedulova J.A., Gavrishova T.N. et.al. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 24137. https://doi.org/10.1039/d2cp02865d.
  64. 64. Budyka M.F., Gavrishova T.N., Li V.M., Tovstun S.A. // Spectr. Acta, Part A. 2024. V. 320. P. 124666. https://doi.org/10.1016/j.saa.2024.124666
  65. 65. Будыка М.Ф., Ли В.М., Гавришова Т.Н. // Химия высоких энергий. 2025. Т. 59. С. 26. https://doi.org/10.1134/S0018143924701431
  66. 66. Будыка М.Ф. // Химия высоких энергий. 2007. Т. 41. C. 213. https://doi.org/10.1134/S0018143907030058
  67. 67. Lord S.J., Conley N.R., Lee H.D. et.al. // J. Am. Chem. Soc. 2008. V. 130. P. 9204. https://doi.org/10.1021/ja802883k
  68. 68. Homan R.A., Lapek J.D., Woo C.M. et.al. // Nat. Rev. Methods Primers. 2024. V. 4. P. 30. https://doi.org/10.1038/s43586-024-00308-4
  69. 69. Lord S.J., Lee H.D., Samuel R. et.al. // J. Phys. Chem. B. 2010. V. 114. P. 14157. https://doi.org/10.1021/jp907080r
  70. 70. Belov V.N., Wurm C.A., Boyarskiy V.P., Jakobs S., Hell S.W. // Angew. Chem. Int. Ed. 2010. V. 49. P. 3520. https://doi.org/10.1002/anie.201000150
  71. 71. Hauke S., von Appen A., Quidwai T., Ries J., Wom­bacher R. // Chem. Sci. 2017. V. 8. P. 559. https://doi.org/10.1039/c6sc02088g
  72. 72. Maurel D., Banala S., Laroche T., Johnsson K. // ACS Chem. Biol. 2010. V. 5. P. 507. https://doi.org/10.1021/cb1000229
  73. 73. Gong Q., Zhang X., Li W. et.al. // J. Am. Chem. Soc. 2022. V. 144. P. 21992. https://doi.org/10.1021/jacs.2c08947
  74. 74. Lincoln R., Bossi M.L., Remmel M. et.al. // Nat. Chem. 2022. V. 14. P. 1013. https://doi.org/10.1038/s41557-022-00995-0
  75. 75. Vaughan J.C., Jia S., Zhuang X.W. // Nat. Methods. 2012. V. 9. P. 1181. https://doi.org/10.1038/nmeth.2214
  76. 76. Go G., Jeong U., Park H., Go S., Kim D. // Angew. Chem. Int. Ed. 2024. V. 63. P. e202405246. https://doi.org/10.1002/anie.202405246
  77. 77. Efros A.L., Nesbitt D.J. // Nat. Nanotechn. 2016. V. 11. P. 661. https://doi.org/10.1038/nnano.2016.140
  78. 78. Shi J., Sun W., Utzat H. et.al. // Ibid. 2021. V. 16. P. 1355. https://doi.org/10.1038/s41565-021-01016-w
  79. 79. Du J., Yang Z., Lin H., Poelman D. // Respons. Mater. 2024. V. 2. P. e20240004. https://doi.org/10.1002/rpm.20240004
  80. 80. Knibbe H., Rehm D., Weller A. // Ber. Bunsen-Ges., Phys. Chem. 1969. V. 73. P. 839. https://doi.org/10.1002/bbpc.19690730819
  81. 81. Fukaminato T., Tanaka M., Doi T. et.al. // Photochem. Photobiol. Sci. 2010. V. 9. P. 181. https://doi.org/10.1039/b9pp00131j
  82. 82. Braslavsky S.E., Fron E., Rodriguez H.B. et.al. // Ibid. 2008. V. 7. P. 1444. https://doi.org/10.1039/b810620g
  83. 83. Irie M., Fukaminato T., Sasaki T., Tamai N., Kawai T. // Nature. 2002. V. 420. P. 759. https://doi.org/10.1038/420759a
  84. 84. Fukaminato T., Sasaki T., Kawai T., Tamai N., Irie M. // J. Am. Chem. Soc. 2004. V. 126. P. 14843. https://doi.org/10.1021/ja047169n
  85. 85. Galimov D.I., Tuktarov A.R., Sabirov D.Sh., Khuzin A.A., Dzhemilev U.M. // J. Photochem. Photobiol., A. 2019. V. 375. P. 64. https://doi.org/10.1016/j.jphotochem.2019.02.017
  86. 86. Jeong J., Yun E., Choi Y. et.al. // Chem. Commun. 2011. V. 47. P. 10668. https://doi.org/10.1039/c1cc14041h
  87. 87. Budyka M.F. // Org. Photonics Photovolt. 2015. V. 3. P. 101. https://doi.org/10.1515/oph-2015-0001
  88. 88. Perrier A., Maurel F., Jacquemin D. // Acc. Chem. Res. 2012. V. 45. P. 1173. https://doi.org/10.1021/ar200214k
  89. 89. Ordronneau L., Aubert V., Metivier R. et.al. // Phys. Chem. Chem. Phys. 2012. V. 14. P. 2599. https://doi.org/10.1039/c2cp23333a
  90. 90. Ordronneau L., Boixel J., Aubert V. et.al. // Org. Biomol. Chem. 2014. V. 12. P. 979. https://doi.org/10.1039/c3ob42119h
  91. 91. Budyka M.F., Li V.M. // ChemPhysChem. 2017. V. 18. P. 260. https://doi.org/10.1002/cphc.201600722
  92. 92. Budyka M.F., Lee V.M., Gavrishova T.N. // J. Photochem. Photobiol., A. 2014. V. 279. P. 59. https://doi.org/10.1016/j.jphotochem.2014.01.004
  93. 93. Balzani V., Cola L., Prodi L., Scandola F. //Pure Appl. Chem. 1990. V. 62. P. 1457. https://doi.org/10.1351/pac199062081457
  94. 94. Zhu F., Hou X.-F., Wang J. et.al. // Asian J. Org. Chem. V. 2024. P. e202400385. https://doi.org/10.1002/ajoc.202400385
  95. 95. Andréasson J., Straight S.D., Kodis G. et.al. // J. Am. Chem. Soc. 2006. V. 128. P. 16259. https://doi.org/10.1021/ja0654579
  96. 96. Andreasson J., Pischel U., Straight S.D. et.al. // Ibid. 2011. V. 133. P. 11641. https://doi.org/10.1021/ja203456h
  97. 97. Andreasson J., Straight S.D., Bandyopadhyay S. et.al. // Angew. Chem. Int. Ed. 2007. V. 46. P. 958. https://doi.org/10.1002/anie.200603856
  98. 98. Andreasson J., Straight S.D., Moore T.A., Moore A.L., Gust D. // Chem. Eur. J. 2009. V. 15. P. 3936. https://doi.org/10.1002/chem.200900043
  99. 99. Doddi S., Ramakrishna B., Venkatesha Y., Bangl P.R. // RSC Adv. 2015. V. 5. P. 56855. https://doi.org/10.1039/C5RA06628J
  100. 100. Doddi S., Narayanaswamy K., Ramakrishna B., Singh S.P., Bangal P.R. // J. Fluoresc. 2016. V. 26. P. 1939. https://doi.org/10.1007/s10895-016-1886-0
  101. 101. Yan Q., Xu J., Luo M. et.al. // Dyes Pigm. 2023. V. 214. P. 111231. https://doi.org/10.1016/j.dyepig.2023.111231
  102. 102. Hu Z., Zhang Q., Xue M., Sheng Q., Liu Y. // Opt. Mater. 2008. V. 30. P. 851. https://doi.org/10.1016/j.optmat.2007.03.012
  103. 103. Yao Z., Wang X., Liu J. et.al. // Chem. Commun. 2023. V. 59. P. 2469. DOI: 10.1039/d2cc06707b
  104. 104. Naren G., Hsu C.W., Li S. et.al. // Nat. Commun. 2019. V. 10. P. 3996. https://doi.org/10.1038/s41467-019-11885-4
  105. 105. Yildiz I., Deniz E., Raymo F. // Chem. Soc. Rev. 2009. V. 38. P. 1859. https://doi.org/10.1039/b804151m
  106. 106. Credi A. // New J. Chem. 2012. V. 36. P. 1925. https://doi.org/10.1039/c2nj40335h
  107. 107. Чащихин О.В., Будыка М.Ф. // Химия высоких энергий. 2017. Т. 51. C. 449. https://doi.org/10.1134/S0018143918010022
  108. 108. Zhao J.-L., Li M.-H., Cheng Y.-M. et.al. // Coord. Chem. Rev. 2023. V. 475. P. 214918. https://doi.org/10.1016/j.ccr.2022.214918
  109. 109. Будыка М.Ф., Чащихин О.В., Никулин П.А. // Рос. нанотехнол. 2016. Т.11. №1–2. C.67. https://doi.org/10.1134/S199507801601002X
  110. 110. Chaschikhin O.V., Budyka M.F., Gavrishova T.N., Li V.M. // RSC Advances. 2017. V. 7. P. 2236. https://doi.org/10.1039/C6RA27577J
  111. 111. Liu M., Tang G., Liu Y., Jiang F. // J. Phys. Chem. Lett. 2024. V. 15. P. 1975. https://doi.org/10.1021/acs.jpclett.3c03413
  112. 112. Diaz S., Menendez G., Etchehon M. et.al. // ACS Nano. 2011. V. 5. P. 2795. https://doi.org/10.1021/nn103243c
  113. 113. Zhu L., Zhu M.-Q., Hurst J.K., Li A.D.Q. // J. Am. Chem. Soc. 2005. V. 127. P. 8968. https://doi.org/10.1021/ja0423421
  114. 114. Han G., Mokari T., Ajo-Franklin C., Cohen B.E. // Ibid. 2008. V. 130. P. 15811. https://doi.org/10.1021/ja804948s
  115. 115. Diaz S.A., Giordano L., Jovin T.M., Jares-Erij­man E.A. // Nano Lett. 2012. V. 12. P. 3537. https://doi.org/10.1021/nl301093s
  116. 116. Budyka M.F., Nikulin P.A., Gavrishova T.N., Cha­shchikhin O.V. // ChemPhotoChem. 2021. V. 5. P. 582. https://doi.org/10.1002/cptc.202000285
  117. 117. Будыка М.Ф., Никулин П.А. // Химия высоких энергий. 2021. Т. 55. С. 436. https://doi.org/10.31857/S0023119321060036
  118. 118. Oneil C.E., Jackson J.M., Shim S.-H., Soper S.A. // Anal. Chem. 2016. V. 88. P. 3686. https://doi.org/10.1021/acs.analchem.5b04472
  119. 119. Zhang Y., Lucas J.M., Song P. et.al. // Proc. Natl. Acad. Sci. U.S.A. 2015. V. 112. P. 8959. https://doi.org/10.1073/pnas.1502005112
  120. 120. Andoy N.M., Zhou X., Choudhary E. et.al. // J. Am. Chem. Soc. 2013. V. 135. P. 1845. https://doi.org/10.1021/ja309948y
  121. 121. Chen X., Hou X.-F., Chen X.-M., Li Q. // Nat. Comm. 2024. V. 15. P. 5401. https://doi.org/10.1038/s41467-024-49670-7
  122. 122. Wang L., Zhong W., Gao W., Liu W., Shang L. // Chem. Eng. J. 2024. V. 479. P. 147490. https://doi.org/10.1016/j.cej.2023.147490
  123. 123. https://www.sciencedirect.com
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library