- PII
- 305192-690183-1
- DOI
- 10.7868/30183-1
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 44 / Issue number 6
- Pages
- 97-108
- Abstract
- The equations of multimoment hydrodynamics are used to interpret flows behind the sphere that do not have axial symmetry. In accordance with the general approach to solving the equations of multimoment hydrodynamics, a set of nonlinear first-order differential equations for unknown coefficients is derived. Numerical integration of the derived equations shows that a high value of the turbulence coefficient provides a transition from the basic axisymmetric solution to the basic weakly asymmetric solution. It was found that the asymmetric solution is not stable. The instability of the asymmetric solution creates prospects for interpreting the observed evolution of weakly asymmetric flow. It becomes possible to reproduce the vortex shedding observed at moderately high values of the Reynolds number. There are prospects for interpreting the turbulence that develops with a further increase in the Reynolds number.
- Keywords
- многомоментная гидродинамика неустойчивое решение
- Date of publication
- 16.06.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 56
References
- 1. Лебедь И.В . // Хим. физика. 2025. Т. 44. № 6. С.
- 2. Лебедь И.В. // Хим. физика. 1997. Т. 16. № 7. С. 72.
- 3. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Гостехиздат, 1953.
- 4. Lebed I.V. The foundations of multimoment hydrodynamics, Part 1: ideas, methods and equations. N.Y.: Nova Sci. Publ., 2018.
- 5. Glansdorff P., Prigogine I. Thermodynamic theory of structure, stability, and fluctuations. N.Y.: Willey, 1971.
- 6. Taneda S. // J. Phys. Soc. Jpn. 1956. V. 11. № 10. P. 1104. http:// doi.org/10.1143/JPSJ.11.1104
- 7. Chomaz J.M., Bonneton P., Hopfinger E.J. // J. Fluid Mech. 1993. V. 234. P. 1. http:// doi.org/10.1017/S0022112093002009
- 8. Magarvey R.H., Bishop R.L. // Canad. J. Phys. 1961. V. 39, №7. P. 1418.
- 9. Magarvey R.H., MacLatchy C.S. // Ibid. 1965. V. 43, № 9. P. 1649.
- 10. Winikow S., Chao B.T. // Phys. Fluids. 1966. V.9. №1. P. 50.
- 11. Sakamoto H., Haniu H. // J. Fluid Mech. 1995. V. 287. P. 151. http:// doi.org/10.1017/S0022112095000905
- 12. Schuster H.G. Deterministic chaos. Weinheim: Physik Verlag, 1984.
- 13. Natarajan R., A. Acrivos A. // J. Fluid Mech. 1993. V. 254. P. 323. http:// doi.org/10.1017/S0022112093002150
- 14. Tomboulides A.G., Orszag S.A. // Ibid. 2000. V. 416. P. 45. http:// doi.org/10.1017/S0022112000008880
- 15. Лебедь И.В. // Хим. физика. 2014. Т. 33. № 4. С. 1. http:// doi.org/10.7868/S0207401X14040074
- 16. Kiselev A.Ph., Lebed I.V. // Chaos, Solitons, Fractals. 2021. V. 142. №110491, http:// doi.org/10.1134/S1990793121030222
- 17. Лебедь И.В . // Хим. физика. 2022. Т. 41. № 4. С. 81. http:// doi.org/10.31857/S0207401X22040045
- 18. Лебедь И.В. // Хим. физика. 2023. Т. 42. № 9. С. 83. http:// doi.org/10.31857/S0207401X23090054
- 19. Лебедь И.В. // Хим. физика. 2024. Т. 43. № 9. С. 86.
- 20. Лебедь И.В. // Хим. физика. 2024. Т. 43. № 9. С. 97.