На основе данных термогравиметрического анализа и дифференциальной сканирующей калориметрии определены кинетические характеристики термического разложения уротропина в потоках N2 и CO2. Скорости нагрева образцов составляли 20, 60 и 90 К/мин. Значения кинетических констант скорости разложения уротропина определены по методу Киссинджера. При газификации в азоте энергия активации термораспада уротропина увеличивается со 106 до 139 кДж/моль в условиях роста степени превращения вещества. Значение предэкспонента также увеличивается с 0.35 · 109 до 145 · 109 с–1. Разложение уротропина протекает по экзотермической реакции с теплотой 368, 339 и 275 кДж/кг для скоростей нагрева 20, 60 и 90 К/мин соответственно. При газификации в углекислом газе энергия активации термораспада уротропина сначала увеличивается со 110 до 132 кДж/моль по мере увеличения степени превращения, а затем снижается до 120 кДж/моль. Теплота разложения уротропина в потоке СО2 составляет 382, 327 и 303 кДж/кг для скоростей нагрева 20, 60 и 90 К/мин соответственно.
С помощью термогравиметрического анализа определены кинетические константы термического разложения полиметилметакрилата (ПММА) в окислительной среде в широком диапазоне скоростей нагрева образцов. Значения кинетических констант разложения ПММА определены по методу Киссинджера. Показано, что с увеличением степени разложения полимера константа скорости снижается при постоянном значении температуры.
Методом термогравиметрического анализа определены кинетические константы термического разложения полиметилметакрилата в потоке углекислого газа в широком диапазоне скоростей нагрева образцов (2–50 К/мин). Значения кинетических констант разложения определены по методу постоянных степеней превращения. Показано, что для степеней превращения вещества от 10 до 90% значения энергии активации термораспада ПММА изменяются в диапазоне 213.5–194.3 кДж/моль, а значения предэкспоненциального коэффициента – в диапазоне 1.62 · 1016– 6.85 · 1012 с−1. Среднее значение энергии активации термораспада ПММА в потоке углекислого газа составило 206 кДж/моль.
Предложено использовать процесс пиролиза аммиака в реакторе фильтрационного горения с подвижным слоем теплоносителя с целью получения водорода. Процесс может быть реализован в реакторах с рекуперацией энергии при раздельной подаче реагентов (в том числе в реакторах типа Swiss Roll и др.). Рассчитан массово-энергетический баланс процесса. Анализ продуктов пиролиза проводился при условии термодинамического равновесия с варьированием температуры (300–1100 К) и давления (1–10 бар). Показано, что при атмосферном давлении пиролиз аммиака заканчивается до температуры 620 К. Повышение давления в системе приводило к небольшому увеличению температуры полного термического разложения аммиака. Доля сжигаемого водорода, необходимого для покрытия энергетических затрат на нагрев и пиролиз исходного аммиака в случае адиабатического реактора, составила 0.13. Из одного моля аммиака можно получить 1.31 моля водорода.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации