- PII
- S0207401X25010063-1
- DOI
- 10.31857/S0207401X25010063
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 44 / Issue number 1
- Pages
- 52-62
- Abstract
- The paper investigates the effect of the content of the Fe + Co + Cr + Ni + Al metal binder and mechanical activation (MA) on the combustion rate, elongation of samples during synthesis, mixture yield and size of composite particles after MA, morphology and phase composition of combustion products and activated mixtures in the system (Ti + 2B) + (Ti + C) + x(Fe + Co + Cr + Ni + Al. In the process of MA mixtures, a multicomponent high–entropy alloy is formed – a solid solution based on γ-Fe with a HCC lattice (MHEA). A composite material consisting of ceramics and a high-entropy alloy was obtained by the method of self-propagating high-temperature synthesis (SHS). MA increases the maximum content of the metallic binder in the mixture, at which SHS is carried out at room temperature, from 60 to 80%. After MA, the elongation of the product samples and the combustion rate (in the case of a metal binder presence) of mixtures (Ti + 2B) + (Ti + C) + x(Fe + Co + Cr + Ni + Al) increases. For a mixture (Ti + 2B) + (Ti + C) without a binder, the combustion rate decreases after MA. With an increase in the content of the metal binder Fe + Co + Cr + Ni + Al in mixtures (Ti + 2B) + (Ti + C), the size of composite particles increases, the combustion rate, the yield of the activated mixture and the elongation of the samples of the reaction products of MA mixtures decreases. For the initial mixtures, the dependence of the elongation of the combustion product samples on the content of the binder is nonmonotonic, has a maximum.
- Keywords
- горение механическая активация самораспространяющийся высокотемпературный синтез высокоэнтропийный сплав кермет карбид и диборид титана
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 6
References
- 1. Basu B., Raju G.B., Suri A.K. // Intern. Mater. Rev. 2006. V. 51. № 6. P. 352. https://doi.org/10.1179/174328006X102529
- 2. Vallauri D., Atías Adrián I.C., Chrysanthou A. // J. Eur. Ceram. Soc. 2008. V. 28. № 8. P. 1697. https://doi.org/10.1016/j.jeurceramsoc.2007.11.011
- 3. Rogachev A.S., Mukasyan A.S. Combustion for Material Synthesis. N. Y.: CRC Press, Taylor & Francis Group, 2015.
- 4. Hardt A.P., Phung P.V. // Combust. and Flame. 1973. V. 21. № 1. P. 77.
- 5. Hardt A.P., Holsinger R.W. // Ibid. P. 91.
- 6. Шкиро В.М., Боровинская И.П. // Процессы горения в химической технологии и металлургии. Черноголовка, 1975. С.253.
- 7. Сеплярский Б.С., Тарасов А.Г., Кочетков Р.А. // Физика горения и взрыва. 2013. Т. 49. № 5. С. 55.
- 8. Левашов Е.А., Богатов Ю.В., Миловидов А.А. // Там же. 1991. Т. 27. №1. С. 88.
- 9. Сеплярский Б.С., Вадченко С.Г., Костин С.В. и др. // Там же. 2009. Т. 45. № 1. С. 30.
- 10. Князик В.А., Мержанов А.Г., Соломонов Б.В. и др. // Там же. 1985. Т. 21. № 3. С. 69.
- 11. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2020. T 39. № 9. C. 39. https://doi.org/10.31857/S0207401X20090058
- 12. Корчагин М. А., Григорьева Т. Ф., Бохонов Б. Б. и др. // Физика горения и взрыва. 2003. Т. 39. № 1. С. 43.
- 13. Кочетов Н.А. // Хим. физика. 2022. Т. 41. № 7. С. 39–46. https://doi.org/10.31857/S0207401X2207007X
- 14. Корчагин М.А. // Физика горения и взрыва. 2015. Т. 51. № 5. С. 77. https://doi.org/10.15372/FGV20150509
- 15. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2022. Т. 41. № 1. С.42. https://doi.org/10.31857/S0207401X22010071
- 16. Корчагин М.А., Филимонов В.Ю., Смирнов В.Е. и др. // Физика горения и взрыва. 2010. Т. 46. №1. С. 48.
- 17. Кочетов Н.А., Сеплярский Б.С. // Изв. вузов. Порошк. металлургия и функц. покрытия. 2017. № 3. С. 4. https://doi.org/10.17073/1997-308X-2017-3-4-13
- 18. Вьюшков Б.В., Левашов Е.А., Ермилов А.Г. и др. // Физика горения и взрыва. 1994. Т. 30. №5. С. 63.
- 19. Кочетов Н.А., Вадченко C.Г. // Физика горения и взрыва. 2015. Т.51. №4. С. 77. https://doi.org/10.15372/FGV20150410
- 20. Кочетов Н. А. //Физика горения и взрыва. 2022. Т. 58. № 2. С. 49. https://doi.org/10.15372/FGV20220205
- 21. Cantor B., Chang I.T.H., Knight P. et al. // Mater. Sci. Eng., A. 2004. V. 375. P. 213. https://doi.org/10.1016/j.msea.2003.10.257
- 22. Zhang Y., Zuo T.T., Tang Z. et al. // Prog. Mater. Sci. 2014. V. 61. P. 1. https://doi.org/10.1016/j.pmatsci.2013.10.001
- 23. Tsai M.-H., Yeh J.-W. // Mater. Res. Lett. 2014. V. 2. № 3. P. 107. https://doi.org/10.1080/21663831.2014.912690
- 24. Chou H.–P., Chang Y.–S., Chen. S.–K. et al. // Mater. Sci. Eng., B. 2009. V. 163. № 3. P. 184. https://doi.org/10.1016/j.mseb.2009.05.024
- 25. Gali A., George E.P. // Intermetallics. 2013. V. 39. P. 74. https://doi.org/10.1016/j.intermet.2013.03.018
- 26. Gludovatz B., Hohenwarter A., Catoor D. et al. // Science. 2014. V. 345. Iss. 6201. P. 1153. https://doi.org/https://doi.org/10.1126/science.1254581
- 27. Kilmametov A., Kulagin R., Mazilkin A. et al. // Scr. Mater. 2019. V. 158. P. 29–33. https://doi.org/10.1016/j.scriptamat.2018.08.031
- 28. Shahmir H., He J., Lu Z. et al. // Mater. Sci. Eng. A. 2017. V. 685. № 8. P. 342. https://doi.org/10.1016/j.msea.2017.01.016
- 29. Gu J., Ni S., Liu Y. et al. // Ibid. 2019. V. 755. P. 289. https://doi.org/10.1016/j.msea.2019.04.025
- 30. Bhattacharjee P.P., Sathiaraj G.D. et al. // J. Alloys Compd. 2014. V. 587. P. 544. https://doi.org/10.1016/j.jallcom.2013.10.237
- 31. Yeh J.–W., Chen Y.–L., Lin S.–J. et al. // Mater. Sci. Forum. 2007. V. 560. P. 1. https://doi.org/10.4028/www.scientific.net/MSF.560.1
- 32. Кочетов Н.А., Рогачев А.С., Щукин А.С. и др. // Изв. вузов. Порошк. металлургия и фукц. покрытия. 2018. №. 2. С. 35. https://doi.org/10.17073/1997-308X-2018-2-35-42
- 33. Rogachev A.S., Vadchenko S.G., Kochetov N.A. et al. // J. Alloys Compd. 2019. V. 805. P. 1237. https://doi.org/10.1016/j.jallcom.2019.07.195
- 34. Rogachev A.S., Vadchenko S.G., Kochetov N.A. et al. // J. Europ. Ceram. Soc. 2020. V. 40. P. 2527. https://doi.org/10.1016/j.jeurceramsoc.2019.11.059
- 35. Rogachev A.S., Gryadunov A.N., Kochetov N.A. et al. // Intern. J. Self-Propag. High–Temp. Synth. 2019. V. 28. № 3. P. 196. https://doi.org/10.3103/S1061386219030117
- 36. Rajabi A., Ghazali M.J., Syarif J. et al. // Chem. Eng. J. 2014. V. 255. P. 445. https://doi.org/10.1016/j.cej.2014.06.078 .
- 37. Rajabi A., Ghazali M.J., Daud A.R. // Mater. Des. 2015. V. 67. P. 95. https://doi.org/10.1016/j.matdes.2014.10.081 .
- 38. Peng Y., Miao H., Peng Z. // Intern. J. Refract. Met. H. Mater. 2013. V. 39. P. 78. https://doi.org/10.1016/j.ijrmhm.2012.07.001
- 39. Zhang S., Sun Y., Ke B. et al. // Metals. 2018. V. 8. № 1 : 58. P. 1. https://doi.org/10.3390/met8010058
- 40. Fu Z., Koc R. // Mater. Sci. Eng. A. 2017. V. 702. P 184. https://doi.org/10.1016/j.msea.2017.07.008 .
- 41. Fu Z., Koc R. // Ibid. 2018. V. 735. P. 302. https://doi.org/10.1016/j.msea.2018.08.058 .
- 42. de la Obra A.G., Avilés M.A., Torres Y. et al. // Intern. J. Refract. Met. H. Mater. 2017. V. 63. P. 17. https://doi.org/10.1016/j.ijrmhm.2016.04.011 .
- 43. Vadchenko S.G. // Intern. J. Self–Propag. High-Temp. Synth. 2016. V. 25. № 4. P. 210. https://doi.org/10.3103/S1061386216040105
- 44. Vadchenko. S.G. // Ibid. 2015. V. 24. № 2. P. 90. https://doi.org/10.3103/S1061386215020107
- 45. Сеплярский Б.С. // Докл. РАН. 2004. Т.396. № 5. С. 640.
- 46. Сеплярский Б.С., Кочетков Р.А., Лисина Т.Г. и др. // Физика горения и взрыва. 2023. Т. 59. № 3. С. 100. https://doi.org/10.15372/FGV20230309
- 47. Сеплярский Б.С., Кочетков Р.А., Лисина Т.Г. и др. // Хим. физика. 2023. Т. 42. № 9. С. 11. https://doi.org/10.31857/S0207401X23090108
- 48. Сеплярский Б.С., Кочетков Р.А., Лисина Т.Г. и др. // ЖФХ. 2023. Т. 97. № 3. С. 438. https://doi.org/10.31857/S004445372303024X
- 49. Seplyarskii, B.S., Kochetkov, R.A., Lisina, T.G. et al. // Intern. J Self–Propag. High–Temp. Synth. 2022. V. 31. P. 195. https://doi.org/10.3103/S1061386222040100
- 50. Сеплярский Б.С., Абзалов Н.И., Кочетков Р.А., Лисина Т.Г. // Хим. физика. 2021. Т.40. № 4. C. 23. https://doi.org/10.31857/S0207401X21030109
- 51. Kamynina O.K., Rogachev A.S., Sytschev A.E. et al. // Intern. J. Self–Propag. High–Temp. Synth. 2004. V. 13. № 3. P.193.
- 52. Камынина О.К., Рогачев А.С., Умаров Л.М. // Физика горения и взрыва. 2003. Т. 39. № 5. С. 69.
- 53. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2018. Т. 37. № 10. С. 44. https://doi.org/10.1134/S0207401X18100059