RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

The effect of the metal binder content and mechanical activation on combustion in the (Ti + 2B) + (Ti + C) + x(Fe + Co + Cr + Ni + Al) system

PII
S0207401X25010063-1
DOI
10.31857/S0207401X25010063
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 1
Pages
52-62
Abstract
The paper investigates the effect of the content of the Fe + Co + Cr + Ni + Al metal binder and mechanical activation (MA) on the combustion rate, elongation of samples during synthesis, mixture yield and size of composite particles after MA, morphology and phase composition of combustion products and activated mixtures in the system (Ti + 2B) + (Ti + C) + x(Fe + Co + Cr + Ni + Al. In the process of MA mixtures, a multicomponent high–entropy alloy is formed – a solid solution based on γ-Fe with a HCC lattice (MHEA). A composite material consisting of ceramics and a high-entropy alloy was obtained by the method of self-propagating high-temperature synthesis (SHS). MA increases the maximum content of the metallic binder in the mixture, at which SHS is carried out at room temperature, from 60 to 80%. After MA, the elongation of the product samples and the combustion rate (in the case of a metal binder presence) of mixtures (Ti + 2B) + (Ti + C) + x(Fe + Co + Cr + Ni + Al) increases. For a mixture (Ti + 2B) + (Ti + C) without a binder, the combustion rate decreases after MA. With an increase in the content of the metal binder Fe + Co + Cr + Ni + Al in mixtures (Ti + 2B) + (Ti + C), the size of composite particles increases, the combustion rate, the yield of the activated mixture and the elongation of the samples of the reaction products of MA mixtures decreases. For the initial mixtures, the dependence of the elongation of the combustion product samples on the content of the binder is nonmonotonic, has a maximum.
Keywords
горение механическая активация самораспространяющийся высокотемпературный синтез высокоэнтропийный сплав кермет карбид и диборид титана
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Basu B., Raju G.B., Suri A.K. // Intern. Mater. Rev. 2006. V. 51. № 6. P. 352. https://doi.org/10.1179/174328006X102529
  2. 2. Vallauri D., Atías Adrián I.C., Chrysanthou A. // J. Eur. Ceram. Soc. 2008. V. 28. № 8. P. 1697. https://doi.org/10.1016/j.jeurceramsoc.2007.11.011
  3. 3. Rogachev A.S., Mukasyan A.S. Combustion for Material Synthesis. N. Y.: CRC Press, Taylor & Francis Group, 2015.
  4. 4. Hardt A.P., Phung P.V. // Combust. and Flame. 1973. V. 21. № 1. P. 77.
  5. 5. Hardt A.P., Holsinger R.W. // Ibid. P. 91.
  6. 6. Шкиро В.М., Боровинская И.П. // Процессы горения в химической технологии и металлургии. Черноголовка, 1975. С.253.
  7. 7. Сеплярский Б.С., Тарасов А.Г., Кочетков Р.А. // Физика горения и взрыва. 2013. Т. 49. № 5. С. 55.
  8. 8. Левашов Е.А., Богатов Ю.В., Миловидов А.А. // Там же. 1991. Т. 27. №1. С. 88.
  9. 9. Сеплярский Б.С., Вадченко С.Г., Костин С.В. и др. // Там же. 2009. Т. 45. № 1. С. 30.
  10. 10. Князик В.А., Мержанов А.Г., Соломонов Б.В. и др. // Там же. 1985. Т. 21. № 3. С. 69.
  11. 11. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2020. T 39. № 9. C. 39. https://doi.org/10.31857/S0207401X20090058
  12. 12. Корчагин М. А., Григорьева Т. Ф., Бохонов Б. Б. и др. // Физика горения и взрыва. 2003. Т. 39. № 1. С. 43.
  13. 13. Кочетов Н.А. // Хим. физика. 2022. Т. 41. № 7. С. 39–46. https://doi.org/10.31857/S0207401X2207007X
  14. 14. Корчагин М.А. // Физика горения и взрыва. 2015. Т. 51. № 5. С. 77. https://doi.org/10.15372/FGV20150509
  15. 15. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2022. Т. 41. № 1. С.42. https://doi.org/10.31857/S0207401X22010071
  16. 16. Корчагин М.А., Филимонов В.Ю., Смирнов В.Е. и др. // Физика горения и взрыва. 2010. Т. 46. №1. С. 48.
  17. 17. Кочетов Н.А., Сеплярский Б.С. // Изв. вузов. Порошк. металлургия и функц. покрытия. 2017. № 3. С. 4. https://doi.org/10.17073/1997-308X-2017-3-4-13
  18. 18. Вьюшков Б.В., Левашов Е.А., Ермилов А.Г. и др. // Физика горения и взрыва. 1994. Т. 30. №5. С. 63.
  19. 19. Кочетов Н.А., Вадченко C.Г. // Физика горения и взрыва. 2015. Т.51. №4. С. 77. https://doi.org/10.15372/FGV20150410
  20. 20. Кочетов Н. А. //Физика горения и взрыва. 2022. Т. 58. № 2. С. 49. https://doi.org/10.15372/FGV20220205
  21. 21. Cantor B., Chang I.T.H., Knight P. et al. // Mater. Sci. Eng., A. 2004. V. 375. P. 213. https://doi.org/10.1016/j.msea.2003.10.257
  22. 22. Zhang Y., Zuo T.T., Tang Z. et al. // Prog. Mater. Sci. 2014. V. 61. P. 1. https://doi.org/10.1016/j.pmatsci.2013.10.001
  23. 23. Tsai M.-H., Yeh J.-W. // Mater. Res. Lett. 2014. V. 2. № 3. P. 107. https://doi.org/10.1080/21663831.2014.912690
  24. 24. Chou H.–P., Chang Y.–S., Chen. S.–K. et al. // Mater. Sci. Eng., B. 2009. V. 163. № 3. P. 184. https://doi.org/10.1016/j.mseb.2009.05.024
  25. 25. Gali A., George E.P. // Intermetallics. 2013. V. 39. P. 74. https://doi.org/10.1016/j.intermet.2013.03.018
  26. 26. Gludovatz B., Hohenwarter A., Catoor D. et al. // Science. 2014. V. 345. Iss. 6201. P. 1153. https://doi.org/https://doi.org/10.1126/science.1254581
  27. 27. Kilmametov A., Kulagin R., Mazilkin A. et al. // Scr. Mater. 2019. V. 158. P. 29–33. https://doi.org/10.1016/j.scriptamat.2018.08.031
  28. 28. Shahmir H., He J., Lu Z. et al. // Mater. Sci. Eng. A. 2017. V. 685. № 8. P. 342. https://doi.org/10.1016/j.msea.2017.01.016
  29. 29. Gu J., Ni S., Liu Y. et al. // Ibid. 2019. V. 755. P. 289. https://doi.org/10.1016/j.msea.2019.04.025
  30. 30. Bhattacharjee P.P., Sathiaraj G.D. et al. // J. Alloys Compd. 2014. V. 587. P. 544. https://doi.org/10.1016/j.jallcom.2013.10.237
  31. 31. Yeh J.–W., Chen Y.–L., Lin S.–J. et al. // Mater. Sci. Forum. 2007. V. 560. P. 1. https://doi.org/10.4028/www.scientific.net/MSF.560.1
  32. 32. Кочетов Н.А., Рогачев А.С., Щукин А.С. и др. // Изв. вузов. Порошк. металлургия и фукц. покрытия. 2018. №. 2. С. 35. https://doi.org/10.17073/1997-308X-2018-2-35-42
  33. 33. Rogachev A.S., Vadchenko S.G., Kochetov N.A. et al. // J. Alloys Compd. 2019. V. 805. P. 1237. https://doi.org/10.1016/j.jallcom.2019.07.195
  34. 34. Rogachev A.S., Vadchenko S.G., Kochetov N.A. et al. // J. Europ. Ceram. Soc. 2020. V. 40. P. 2527. https://doi.org/10.1016/j.jeurceramsoc.2019.11.059
  35. 35. Rogachev A.S., Gryadunov A.N., Kochetov N.A. et al. // Intern. J. Self-Propag. High–Temp. Synth. 2019. V. 28. № 3. P. 196. https://doi.org/10.3103/S1061386219030117
  36. 36. Rajabi A., Ghazali M.J., Syarif J. et al. // Chem. Eng. J. 2014. V. 255. P. 445. https://doi.org/10.1016/j.cej.2014.06.078 .
  37. 37. Rajabi A., Ghazali M.J., Daud A.R. // Mater. Des. 2015. V. 67. P. 95. https://doi.org/10.1016/j.matdes.2014.10.081 .
  38. 38. Peng Y., Miao H., Peng Z. // Intern. J. Refract. Met. H. Mater. 2013. V. 39. P. 78. https://doi.org/10.1016/j.ijrmhm.2012.07.001
  39. 39. Zhang S., Sun Y., Ke B. et al. // Metals. 2018. V. 8. № 1 : 58. P. 1. https://doi.org/10.3390/met8010058
  40. 40. Fu Z., Koc R. // Mater. Sci. Eng. A. 2017. V. 702. P 184. https://doi.org/10.1016/j.msea.2017.07.008 .
  41. 41. Fu Z., Koc R. // Ibid. 2018. V. 735. P. 302. https://doi.org/10.1016/j.msea.2018.08.058 .
  42. 42. de la Obra A.G., Avilés M.A., Torres Y. et al. // Intern. J. Refract. Met. H. Mater. 2017. V. 63. P. 17. https://doi.org/10.1016/j.ijrmhm.2016.04.011 .
  43. 43. Vadchenko S.G. // Intern. J. Self–Propag. High-Temp. Synth. 2016. V. 25. № 4. P. 210. https://doi.org/10.3103/S1061386216040105
  44. 44. Vadchenko. S.G. // Ibid. 2015. V. 24. № 2. P. 90. https://doi.org/10.3103/S1061386215020107
  45. 45. Сеплярский Б.С. // Докл. РАН. 2004. Т.396. № 5. С. 640.
  46. 46. Сеплярский Б.С., Кочетков Р.А., Лисина Т.Г. и др. // Физика горения и взрыва. 2023. Т. 59. № 3. С. 100. https://doi.org/10.15372/FGV20230309
  47. 47. Сеплярский Б.С., Кочетков Р.А., Лисина Т.Г. и др. // Хим. физика. 2023. Т. 42. № 9. С. 11. https://doi.org/10.31857/S0207401X23090108
  48. 48. Сеплярский Б.С., Кочетков Р.А., Лисина Т.Г. и др. // ЖФХ. 2023. Т. 97. № 3. С. 438. https://doi.org/10.31857/S004445372303024X
  49. 49. Seplyarskii, B.S., Kochetkov, R.A., Lisina, T.G. et al. // Intern. J Self–Propag. High–Temp. Synth. 2022. V. 31. P. 195. https://doi.org/10.3103/S1061386222040100
  50. 50. Сеплярский Б.С., Абзалов Н.И., Кочетков Р.А., Лисина Т.Г. // Хим. физика. 2021. Т.40. № 4. C. 23. https://doi.org/10.31857/S0207401X21030109
  51. 51. Kamynina O.K., Rogachev A.S., Sytschev A.E. et al. // Intern. J. Self–Propag. High–Temp. Synth. 2004. V. 13. № 3. P.193.
  52. 52. Камынина О.К., Рогачев А.С., Умаров Л.М. // Физика горения и взрыва. 2003. Т. 39. № 5. С. 69.
  53. 53. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2018. Т. 37. № 10. С. 44. https://doi.org/10.1134/S0207401X18100059
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library