- PII
- S0207401X25020082-1
- DOI
- 10.31857/S0207401X25020082
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 44 / Issue number 2
- Pages
- 80-90
- Abstract
- The interaction of hemin and the Zn(II)-complex of tetra(4-pyridyl)porphyrin (ZnTPP) with hexamolybdenonickelate anions in an aqueous medium has been studied by electron absorption spectroscopy and spectrofluorimetry. Differences in spectral behavior of two metal porphyrins when interacting with heteropoly compounds are associated with differences in the structure of these porphyrins. Both the transformation of the porphyrins characteristic bands is manifested, and new bands are found in the electron absorption spectra that indicates the formation of hybrid organo-inorganic complexes. In addition, fluorescence quenching of ZnTPP, predominantly of the static type, is observed, which also testifies the formation of hybrid complexes. The binding ability of the ZnTPP system - crystalline hydrate of sodium hexamolibdenonicelate (HMN) was evaluated, as well as the stability of the obtained hybrid complex. The results of the study will be useful when creating hybrid complexes by molecular design in order to further incorporate them into various biomedical applications.
- Keywords
- гетерополисоединения порфирины электронные спектры поглощения флуоресценция константа связывания
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 3
References
- 1. Аскаров К.А., Березин Б.Д., Быстрицкая Е.В. и др. Порфирины: спектроскопия, электрохимия, применение. М.: Наука, 1987.
- 2. Березин Б.Д. Металлопорфирины. М.: Наука, 1988.
- 3. Березин Д.Б. Макроциклический эффект и структурная химия порфиринов. М.: КРАСАНД, 2010.
- 4. Гуринович Г.П., Севченко А.И., Соловьев К.Н. // УФН. 1963. Т. 79. №. 2. С. 173.
- 5. Zhao L., Ma R., Li J. et al. // Biomacromolecules. 2008. V. 9. № 10. P. 2601. https://doi.org/10.1021/bm8004808
- 6. Josefsen L.B., Boyle R.W. // Theranostics. 2012. V. 2. № 9. P. 916. https://doi.org/10.7150/thno.4571
- 7. Bonnett R., Martinez G. // Tetrahedron. 2001. V. 57. № 47. P. 9513. https://doi.org/10.1016/S0040-4020 (01)00952-8
- 8. Bonnett R. // Comprehensive Coordination Chemistry II. V. 9. London, UK: University of London, 2003. P. 945–1003. https://doi.org/10.1016/B0-08-043748-6/09204-5
- 9. Жданова К.А., Савельева И.О., Усанев А.Ю. и др. // ЖНХ. 2022. T. 67. № 11. С. 1567. https://doi.org/10.31857/S0044457X2260075X
- 10. Ball D. J., Mayhew S., Wood S. R. et al. // Photochem. Photobiol. 1999. V. 69. № 3. P. 390. https://doi.org/10.1562/0031-8655 (1999)0692.3.co;2
- 11. Esenpinar A.A., Durmuş M., Bulut M. // J. Photochem. Photobiol., A. 2010. V. 213. № 2–3. P. 171. https://doi.org/10.1016/j.jphotochem.2010.05.021
- 12. Beletskaya I.P., Tyurin V.S., Tsivadze A.Yu, et al. // Chem. Rev. 2009. V. 109. № 5. P. 1659. https://doi.org/10.1021/cr800247a
- 13. Поволоцкий А.В., Солдатова Д.А., Лукьянов Д.А. и др. // Хим. физика. 2023. Т. 42. № 12. С. 70. https://doi.org/10.31857/S0207401X23120087
- 14. Klimenko I.V., Trusova E.A., Shchegolikhin A.N. et al. // Fullerenes, Nanotubes Carbon Nanostruct. 2022. V. 30. № 1. P. 133. https://doi.org/10.1080/1536383X.2021.1976754
- 15. Pamin K., Prończuk M., Basąg S. et al. // Inorg. Chem. Commun. 2015. V 59. P. 13–16. https://doi.org/10.1016/j.inoche.2015.06.005
- 16. Okuhara T., Mizuno N., Misono M. // Adv. Catalysis. 1996. V. 41. P. 113. https://doi.org/10.1016/S0360-0564 (08)60041-3
- 17. Yoshida S., Niiyama H., Echigoya E. // J. Phys. Chem. 1982. V. 86. № 16. P. 3150. https://doi.org/10.1021/j100213a018
- 18. Mioc U.B., Todorovic M.R., Davidovic M. // Solid State Ionics. 2005. V. 176. № 39–40. P. 3005. https://doi.org/10.1016/j.ssi.2005.09.056
- 19. Aureliano M. // BioChem. 2022. V. 2. P. 8. https://doi.org/10.3390/biochem2010002
- 20. Tyubaeva P., Varyan I., Lobanov A. et al. // Polymers. 2021. V. 13. № 22. No 4024. https://doi.org/10.3390/polym13224024
- 21. Тертышная Ю.В., Хватов А.В., Лобанов А.В. // Хим. физика. 2017. Т. 36. № 9. С. 53. https://doi.org/10.31857/S0207401X20110138
- 22. Куликова О.М., Шейнин В.Б., Койфман О.И. // Макрогетероциклы. 2021. T. 14. № 1. P.79. https://doi.org/10.6060/mhc200501s
- 23. Nunes S.M.T., Sguilla F.S., Tedesco A C. // J. Medical Biol. Res. 2004. V. 37. № 2. P. 237. https://doi.org/10.1590/s0100-879x2004000200016
- 24. Lukyanets E.A., Nemykin V N. // J. Porphyrins Phthalocyanines. 2010. V. 14. P. 1. https://doi.org/10.1142/S1088424610001799
- 25. Березин Б.Д., Койфман О.И. // Успехи химии. 1980. T. 49, № 12. C. 2389.
- 26. Клименко И.В., Градова М.А., Градов О.В. и др. // Хим. физика. 2020. Т. 39. № 5. С. 43. https://doi.org/10.31857/S0207401X20050076
- 27. Разумов В.Ф. // Хим. физика. 2023. Т.42. № 2. С. 14. https://doi.org/10.31857/S0207401X23020139
- 28. Бурцев И.Д., Егоров А.Е., Костюков А.А. и др. // Хим. физика. 2022. Т. 41. № 2. С. 41. https://doi.org/10.31857/S0207401X22020029
- 29. Полетаев А.И. // Хим. физика. 2023. Т. 42. № 9. С. 74. https://doi.org/10.31857/S0207401X23090091
- 30. Орешкина А.В., Казиев Г.З., Глазунова Т.Ю. // ЖНХ. 2008. Т. 53. № 10. С. 1662.
- 31. Фигурнов В.А. Способ получения гемина: Патент РФ № 2045267. // Б.И. 1995. № 30.
- 32. Lopes J.M.S., Costa S.N., SilveiraAlves E., Jr. et al. // Braz. J. Phys. 2022. № 52. P.164. https://doi.org/10.1007/s13538-022-01166-9
- 33. Sun W., Wang H., Qi D. et al. // CrystEngComm. 2012. V. 14. P. 7780. https://doi.org/10.1039/c2ce25187f
- 34. Gouterman M. // The porphyrins / Ed. Dolphin D.V. 3. Academic Press, Inc., 1978.
- 35. Klimenko I.V., Astakhova T.Yu., Timokhina E.N. et al. // J. Biomed. Photonics Eng. 2023. V. 9. № 2. P. 030301. https://doi.org/10.18287/JBPE23.09.030301
- 36. Lakowicz J.R. Principles of Fluorescence Spectroscopy. Third Edition. LLC: Springer Science+Business Media, 2006. https://doi.org/10.1007/978-0-387-46312-4_2
- 37. Ware W.R. // J. Phys. Chem. 1962. V. 66. P. 455. https://doi.org/10.1021/j100809a020
- 38. Suryawanshi V.D., Walekar L.S., Gore A.H. et. al. // J. Pharm. Anal. 2016. V. 6. № 1. P. 56. https://doi.org/10.1016/j.jpha.2015.07.001i
- 39. Benesi H.A., Hildebrand J.H. // J. Amer. Chem. Soc. 1949. V. 71. P. 2703. https://doi.org/10.1021/ja01176a030
- 40. Wang R., Yu Zh. // Acta Phys.-Chim. Sin. 2007. V. 23. № 9. P. 1353. https://doi.org/10.1016/S1872-1508 (07)60071-0
- 41. Berezin D.B., Kustov A.V., Krest’yaninov M.A. et. al. //J. Mol. Liquids. 2019. V. 283. P. 532. https://doi.org/10.1016/j.molliq.2019.03.091
- 42. Roy D., Chakraborty A., Ghosh R. // RSC Advances. 2017. V. 7. № 64. P. 40563. https://doi.org/10.1039/c7ra06687b