RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Spectral features of interaction of hemin and zinc porphyrin with sodium hexamolybdenicelate

PII
S0207401X25020082-1
DOI
10.31857/S0207401X25020082
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 2
Pages
80-90
Abstract
The interaction of hemin and the Zn(II)-complex of tetra(4-pyridyl)porphyrin (ZnTPP) with hexamolybdenonickelate anions in an aqueous medium has been studied by electron absorption spectroscopy and spectrofluorimetry. Differences in spectral behavior of two metal porphyrins when interacting with heteropoly compounds are associated with differences in the structure of these porphyrins. Both the transformation of the porphyrins characteristic bands is manifested, and new bands are found in the electron absorption spectra that indicates the formation of hybrid organo-inorganic complexes. In addition, fluorescence quenching of ZnTPP, predominantly of the static type, is observed, which also testifies the formation of hybrid complexes. The binding ability of the ZnTPP system - crystalline hydrate of sodium hexamolibdenonicelate (HMN) was evaluated, as well as the stability of the obtained hybrid complex. The results of the study will be useful when creating hybrid complexes by molecular design in order to further incorporate them into various biomedical applications.
Keywords
гетерополисоединения порфирины электронные спектры поглощения флуоресценция константа связывания
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Аскаров К.А., Березин Б.Д., Быстрицкая Е.В. и др. Порфирины: спектроскопия, электрохимия, применение. М.: Наука, 1987.
  2. 2. Березин Б.Д. Металлопорфирины. М.: Наука, 1988.
  3. 3. Березин Д.Б. Макроциклический эффект и структурная химия порфиринов. М.: КРАСАНД, 2010.
  4. 4. Гуринович Г.П., Севченко А.И., Соловьев К.Н. // УФН. 1963. Т. 79. №. 2. С. 173.
  5. 5. Zhao L., Ma R., Li J. et al. // Biomacromolecules. 2008. V. 9. № 10. P. 2601. https://doi.org/10.1021/bm8004808
  6. 6. Josefsen L.B., Boyle R.W. // Theranostics. 2012. V. 2. № 9. P. 916. https://doi.org/10.7150/thno.4571
  7. 7. Bonnett R., Martinez G. // Tetrahedron. 2001. V. 57. № 47. P. 9513. https://doi.org/10.1016/S0040-4020 (01)00952-8
  8. 8. Bonnett R. // Comprehensive Coordination Chemistry II. V. 9. London, UK: University of London, 2003. P. 945–1003. https://doi.org/10.1016/B0-08-043748-6/09204-5
  9. 9. Жданова К.А., Савельева И.О., Усанев А.Ю. и др. // ЖНХ. 2022. T. 67. № 11. С. 1567. https://doi.org/10.31857/S0044457X2260075X
  10. 10. Ball D. J., Mayhew S., Wood S. R. et al. // Photochem. Photobiol. 1999. V. 69. № 3. P. 390. https://doi.org/10.1562/0031-8655 (1999)0692.3.co;2
  11. 11. Esenpinar A.A., Durmuş M., Bulut M. // J. Photochem. Photobiol., A. 2010. V. 213. № 2–3. P. 171. https://doi.org/10.1016/j.jphotochem.2010.05.021
  12. 12. Beletskaya I.P., Tyurin V.S., Tsivadze A.Yu, et al. // Chem. Rev. 2009. V. 109. № 5. P. 1659. https://doi.org/10.1021/cr800247a
  13. 13. Поволоцкий А.В., Солдатова Д.А., Лукьянов Д.А. и др. // Хим. физика. 2023. Т. 42. № 12. С. 70. https://doi.org/10.31857/S0207401X23120087
  14. 14. Klimenko I.V., Trusova E.A., Shchegolikhin A.N. et al. // Fullerenes, Nanotubes Carbon Nanostruct. 2022. V. 30. № 1. P. 133. https://doi.org/10.1080/1536383X.2021.1976754
  15. 15. Pamin K., Prończuk M., Basąg S. et al. // Inorg. Chem. Commun. 2015. V 59. P. 13–16. https://doi.org/10.1016/j.inoche.2015.06.005
  16. 16. Okuhara T., Mizuno N., Misono M. // Adv. Catalysis. 1996. V. 41. P. 113. https://doi.org/10.1016/S0360-0564 (08)60041-3
  17. 17. Yoshida S., Niiyama H., Echigoya E. // J. Phys. Chem. 1982. V. 86. № 16. P. 3150. https://doi.org/10.1021/j100213a018
  18. 18. Mioc U.B., Todorovic M.R., Davidovic M. // Solid State Ionics. 2005. V. 176. № 39–40. P. 3005. https://doi.org/10.1016/j.ssi.2005.09.056
  19. 19. Aureliano M. // BioChem. 2022. V. 2. P. 8. https://doi.org/10.3390/biochem2010002
  20. 20. Tyubaeva P., Varyan I., Lobanov A. et al. // Polymers. 2021. V. 13. № 22. No 4024. https://doi.org/10.3390/polym13224024
  21. 21. Тертышная Ю.В., Хватов А.В., Лобанов А.В. // Хим. физика. 2017. Т. 36. № 9. С. 53. https://doi.org/10.31857/S0207401X20110138
  22. 22. Куликова О.М., Шейнин В.Б., Койфман О.И. // Макрогетероциклы. 2021. T. 14. № 1. P.79. https://doi.org/10.6060/mhc200501s
  23. 23. Nunes S.M.T., Sguilla F.S., Tedesco A C. // J. Medical Biol. Res. 2004. V. 37. № 2. P. 237. https://doi.org/10.1590/s0100-879x2004000200016
  24. 24. Lukyanets E.A., Nemykin V N. // J. Porphyrins Phthalocyanines. 2010. V. 14. P. 1. https://doi.org/10.1142/S1088424610001799
  25. 25. Березин Б.Д., Койфман О.И. // Успехи химии. 1980. T. 49, № 12. C. 2389.
  26. 26. Клименко И.В., Градова М.А., Градов О.В. и др. // Хим. физика. 2020. Т. 39. № 5. С. 43. https://doi.org/10.31857/S0207401X20050076
  27. 27. Разумов В.Ф. // Хим. физика. 2023. Т.42. № 2. С. 14. https://doi.org/10.31857/S0207401X23020139
  28. 28. Бурцев И.Д., Егоров А.Е., Костюков А.А. и др. // Хим. физика. 2022. Т. 41. № 2. С. 41. https://doi.org/10.31857/S0207401X22020029
  29. 29. Полетаев А.И. // Хим. физика. 2023. Т. 42. № 9. С. 74. https://doi.org/10.31857/S0207401X23090091
  30. 30. Орешкина А.В., Казиев Г.З., Глазунова Т.Ю. // ЖНХ. 2008. Т. 53. № 10. С. 1662.
  31. 31. Фигурнов В.А. Способ получения гемина: Патент РФ № 2045267. // Б.И. 1995. № 30.
  32. 32. Lopes J.M.S., Costa S.N., SilveiraAlves E., Jr. et al. // Braz. J. Phys. 2022. № 52. P.164. https://doi.org/10.1007/s13538-022-01166-9
  33. 33. Sun W., Wang H., Qi D. et al. // CrystEngComm. 2012. V. 14. P. 7780. https://doi.org/10.1039/c2ce25187f
  34. 34. Gouterman M. // The porphyrins / Ed. Dolphin D.V. 3. Academic Press, Inc., 1978.
  35. 35. Klimenko I.V., Astakhova T.Yu., Timokhina E.N. et al. // J. Biomed. Photonics Eng. 2023. V. 9. № 2. P. 030301. https://doi.org/10.18287/JBPE23.09.030301
  36. 36. Lakowicz J.R. Principles of Fluorescence Spectroscopy. Third Edition. LLC: Springer Science+Business Media, 2006. https://doi.org/10.1007/978-0-387-46312-4_2
  37. 37. Ware W.R. // J. Phys. Chem. 1962. V. 66. P. 455. https://doi.org/10.1021/j100809a020
  38. 38. Suryawanshi V.D., Walekar L.S., Gore A.H. et. al. // J. Pharm. Anal. 2016. V. 6. № 1. P. 56. https://doi.org/10.1016/j.jpha.2015.07.001i
  39. 39. Benesi H.A., Hildebrand J.H. // J. Amer. Chem. Soc. 1949. V. 71. P. 2703. https://doi.org/10.1021/ja01176a030
  40. 40. Wang R., Yu Zh. // Acta Phys.-Chim. Sin. 2007. V. 23. № 9. P. 1353. https://doi.org/10.1016/S1872-1508 (07)60071-0
  41. 41. Berezin D.B., Kustov A.V., Krest’yaninov M.A. et. al. //J. Mol. Liquids. 2019. V. 283. P. 532. https://doi.org/10.1016/j.molliq.2019.03.091
  42. 42. Roy D., Chakraborty A., Ghosh R. // RSC Advances. 2017. V. 7. № 64. P. 40563. https://doi.org/10.1039/c7ra06687b
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library