- PII
- S0207401X25030047-1
- DOI
- 10.31857/S0207401X25030047
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 44 / Issue number 3
- Pages
- 37-48
- Abstract
- The ignition of tableted samples (ρ = 1 g/cm3) of microparticles (d ≤ 63 microns) of anthracite by laser pulses (532 nm, 10 ns, (0.15–0.5) 109 W/cm2) was studied. When the critical energy density Hcr(1) ≈ 0.15 J/cm2 is exceeded, an optical breakdown of the sample surface occurs during the laser pulse and the formation of a plasma flare with a lifetime of ≥ 5 microseconds. The amplitude of the plasma glow, depending on the energy density of the laser pulses, is described in the framework of the optical breakdown model. The presence of the following atoms and molecules in plasma was identified by the luminescence spectra: C, C+, Ca+, Fe+, Fe, CN, C2, CO. At a density of H > Hcr(2), in anthracite samples, as in hard coals, thermochemical reactions are initiated in the volume of microparticles, the release and ignition of volatile substances and №n-volatile residue in a submillisecond time interval.
- Keywords
- уголь пылеугольное топливо лазерное зажигание горение
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 6
References
- 1. Кислов В.М., Цветков М.В., Зайченко А.Ю. и др. // Хим. физика. 2021. Т. 40. № 9. С. 27. https://doi.org/10.31857/S0207401X21090053
- 2. Paul L.D., Seeley R.R. // Corrosion. 1991. V. 47. № 2. P. 152. https://doi.org/10.5006/1.3585231
- 3. Askarova A.S., Karpenko E.I., Lavrishcheva Y.I. et al.// IEEE Trans. Plasma Sci. 2007. V. 35. P. 1607. https://doi.org/10.1109/TPS.2007.910142
- 4. Masserle V.E., Karpenko E.I., Ustimenko A.B., Lavrichshev O.A. // Fuel Proc. Tech. 2013. V. 107. P. 93. https://doi.org/10.1016/j.fuproc.2012.07.001
- 5. Туктакиев Г.С., Лайко Л.Л. Способ сжигания пылевидного топлива: Патент РФ 2557967 C1 // Б. И. 2015. № 21. С. 11.
- 6. Туктакиев Г.С., Лайко Л.Л. Способ сжигания пылевидного топлива: Патент РФ 2559658 C1 // Б. И. 2015. № 22. С. 11.
- 7. Коротких А.Г., Сорокин И.В., Селихова Е.А., Архипов В.А. // Хим. физика. 2020. Т. 39. № 7. С. 32. https://doi.org/10.31857/S0207401X20070080
- 8. Phuoc T.X., Mathur M.P., Ekmann J.M. // Combust. and Flame. 1993. V. 93. № 1–2. P. 19. https://doi.org/10.1016/0010- 2180(93)90081-D
- 9. Vartak S.D., Gubba S.R., Narayanan K.L. et al. System and method for laser ignition of fuel in a coal-fired burner WO2022/126074 A1. 2022. P. 37.
- 10. Валиулин С.В., Онищук А.А., Палеев Д.Ю. и др. // Хим. физика. 2021. Т. 40. № 4. С. 41. https://doi.org/10.31857/S0207401X21040130
- 11. Taniguchi M., Kobayashi H., Kiyama K., Shimogori Y. // Fuel. 2009. V. 88. № 8. P. 1478.
- 12. Yang Q., Peng Z. // Intern. J. Hydrogen Energy. 2010. V. 35. № 10. P. 4715.
- 13. Манжос Е.В., Коржавин А.А., Козлов Я.В., Намятов И.Г. // Горение и взрыв. 2021. Т. 14. № 3. С. 98. https://doi.org/10.30826/CE21140309
- 14. Chen J.C., Taniguchi M., Narato K., Ito K. // Combust. and Flame. 1994. V. 97. № 1. P. 107. https://doi.org/10.1016/0010- 2180(94)90119-8
- 15. Глова A.Ф., Лысиков A.Ю., Зверев М.М. // Квантовая электрон. 2009. Т. 39. № 6. С. 537. https://doi.org/10.1070/QE2009v039n06ABEH013906
- 16. Taniguchi M., Kobayashi H., Kiyama K., Shimogori Y. // Fuel. 2009. V. 88. № 8. P. 1478. https://doi.org/10.1016/j.fuel.2009.02.009
- 17. Boiko V.M., Volan’skii P., Klimkin V.F. // Combust. Explos. Shock. Waves. 1981. V. 17. № 5. P. 545. https://doi.org/10.1007/BF00798143
- 18. Погодаев В.А. // Физика горения и взрыва. 1984. Т. 20. № 1. С. 51. https://doi.org/10.1007/BF00749917
- 19. Kuzikovskii A.V., Pogodaev V.A. // Combust. Explos. Shock. Waves. 1977. V. 13. № 5. P. 666. https://doi.org/10.1007/BF00742231
- 20. Phuoc T.X., Mathur M.P., Ekmann J.M. // Combust. and Flame. 1993. V. 94. № 4. P. 349. https://doi.org/10.1016/0010-2180 (93)90119-Ng
- 21. Aduev B.P., Kraft Y.V., Nurmukhametov D.R., Ismagilov Z.R. // Combust. Sci. Tech. 2024. V. 196. № 2. P. 274. https://doi.org/10.1080/00102202.2022.2075699
- 22. Адуев Б.П., Нурмухаметов Д.Р., Крафт Я.В., Исмагилов З.Р. // Хим. физика. 2022. Т. 41. № 3. С. 13. https://doi.org/10.31857/S0207401X22030025
- 23. Адуев Б.П., Нурмухаметов Д.Р., Нелюбина Н.В. и др. // Хим. физика. 2023. Т. 42. № 3. С. 3. https://doi.org/10.31857/S0207401X23030032
- 24. Адуев Б.П., Нурмухаметов Д.Р., Нелюбина Н.В. и др. // ЖПС. 2021. Т. 88. № 4. С. 582.
- 25. Адуев Б.П., Нурмухаметов Д.Р., Белокуров Г.М. и др. // ХТТ. 2021. № 3. С. 65. https://doi.org/10.31857/S0023117721030026
- 26. Адуев Б.П., Нурмухаметов Д.Р., Лисков И.Ю., Исмагилов З.Р. // Квантовая электрон. 2023. Т. 53. № 5. С. 430.
- 27. Адуев Б.П., Нурмухаметов Д.Р., Волков В.Д. и др. // ЖПС. 2023. Т. 90. № 4. С. 614.
- 28. Левшин Л.В., Салецкий А.М. Люминесценция и ее измерения. М.: Изд-во МГУ, 1989.
- 29. Адуев Б.П., Нурмухаметов Д.Р., Звеков А.А. и др. // ПТЭ. 2015. № 6. С. 60. https://doi.org/10.7868/S0032816215050018
- 30. Делоне Н.Б. Взаимодействие лазерного излучения с веществом. Курс лекций. М.: Наука, 1989.
- 31. NIST. Standard Reference Database 78. https://dx.doi.org/10.18434/T4W30F
- 32. Camacho J.J., Santos M., Diaz L., Poyato J.M.L. // J. Phys. D. 2018. V. 41. Issue 21. P. 215206. https://doi.org/10.1088/0022-3727/41/21/215206
- 33. Пирс Р., Гейдон А. Отождествление молекулярных спектров. M.: Изд-во иностр. лит., 1949.
- 34. LIFBASE. Database and spectral simulation for diatomic molecules (v. 1.6); https://www.sri.com/platform/lifbase-spectroscopy-tool/