RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Thermodynamic assessment of conversion modes of acid gases/methane mixture for syngas production

PII
S0207401X25040027-1
DOI
10.31857/S0207401X25040027
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 4
Pages
11-18
Abstract
A thermodynamic assessment of the modes of non-catalytic conversion of acid gases and methane to produce syngas was carried out. The air and steam-air conversion modes of a mixture of hydrogen sulfide, carbon dioxide and methane were studied. Model compositions of gases with different contents of hydrogen sulfide (10, 20 and 30 vol.%) and methane (depending on the stoichiometric fuel excess coefficient) were considered. It has been shown that high temperature leads up the conversion of reagents and the syngas formation. With an increase in the amount of methane, the yield of hydrogen increased over the entire temperature range under consideration (1273–1873 K), but conversion rate of hydrogen sulfide decreased significantly. Increasing the amount of hydrogen sulfide in the initial mixture reduces the yield of synthesis gas. Adding water vapor in amounts up to 5 vol.% leads to an increase in the syngas yield and the [H2]/[CO] ratio. The maximum ratio H2/CO = 2.1 was achieved during air conversion of a mixture with 10 vol.% hydrogen sulfide with the same amount of CO2 with a stoichiometric fuel excess ratio of 10 and T = 1873 K.
Keywords
кислые газы сероводород диоксид углерода конверсия синтез-газ водород термодинамика
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Chan Y.H., Lock S.S.M., Wong M.K. et al. // Environ. Pollut. 2022. V. 314. 120219. https://doi.org/10.1016/j.envpol.2022.120219
  2. 2. Chan Y.H., Loy A.C.M., Cheah K.W. et al. // Chem. Eng. J. 2023. V. 458. 141398. https://doi.org/10.1016/j.cej.2023.141398
  3. 3. Raj A., Ibrahim S., Jagannath A. // Prog. Energy Combust. Sci. 2020. V. 80. 100848. https://doi.org/10.1016/j.pecs.2020.100848
  4. 4. Abdalsamed I.A., Amar I.A., Al-abbasi A.A. et al. // Scientific J. Faculty Sci.-Sirte Univ. 2023. V. 3. № 1. P. 158. https://doi.org/10.37375/sjfssu.v3i1.74
  5. 5. Georgiadis A.G., Charisiou N.D., Goula M.A. // Catalysts. 2020. V. 10. № 5. P. 521. https://doi.org/10.3390/catal10050521
  6. 6. Gupta A.K., Ibrahim S., Al Shoaibi A. // Prog. Energy Combust. Sci. 2016. V. 54. P. 65. https://doi.org/10.1016/j.pecs.2015.11.001
  7. 7. Загоруйко А.Н., Шинкарев В.В., Ванаг С.В., Бухтиярова Г.А. // Катализ в промышленности. 2008. № S1. С. 52.
  8. 8. Guo S., Zhou F., Shan J. et al. // Fuel. 2024. V. 367. 131242. https://doi.org/10.1016/j.fuel.2024.131242
  9. 9. Ardeh A.Z., Fathi S., Ashtiani F.Z., Fouladitajar A. // Sep. Purif. Technol. 2024. V. 338. 126173. https://doi.org/10.1016/j.seppur.2023.126173
  10. 10. Ali S.M., Alkhatib I.I., AlHajaj A., Vega L.F. // J. Clean. Prod. 2023. V. 428. 139475. https://doi.org/10.1016/j.jclepro.2023.139475
  11. 11. Spatolisano E., De Guido G., Pellegrini L.A. et al. // J. Clean. Prod. 2022. V. 330. 129889. https://doi.org/10.1016/j.jclepro.2021.129889
  12. 12. Sedov I.V., Arutyunov V.S., Tsvetkov M.V. et al. // Eurasian Chem.-Technol. J. 2022. V. 24. № 2. P. 157. https://doi.org/10.18321/ectj1328
  13. 13. Makaryan I.A., Sedov I.V. // Russ. J. Appl. Chem. 2023. V. 96. № 6. P. 619. https://doi.org/10.1134/S1070427223060010
  14. 14. El-Melih A.M., Ibrahim S., Gupta A.K., Al Shoaibi A. // Appl. Energy. 2016. V. 164. P. 64. https://doi.org/10.1016/j.apenergy.2015.11.025
  15. 15. Scognamiglio S., Ciccone B., Ruoppolo G., Landi G. // Chem. Eng. Trans. 2024. V. 109. P. 277. https://doi.org/10.3303/CET24109047
  16. 16. Colom-Díaz J.M., Lecinena M., Peláez A. et al. // Fuel. 2020. V. 262. 116484. https://doi.org/10.1016/j.fuel.2019.116484
  17. 17. Dell’Angelo A., Andoglu E.M., Kaytakoglu S., Manenti F. // Chem. Prod. Process Model. 2023. V. 18. № 1. P. 117. https://doi.org/10.1515/cppm-2021-0044
  18. 18. Савельева В.А., Старик А.М., Титова Н.С., Фаворский О.Н. // Физика горения и взрыва. 2018. Т. 54. № 2. С. 15. https://doi.org/10.15372/FGV20180202
  19. 19. El-Melih A.M., Al Shoaibi A., Gupta A.K. // Appl. Energy. 2016. V. 178. P. 609. https://doi.org/10.1016/j.apenergy.2016.06.053
  20. 20. Kheirinik M., Rahmanian N. // Advances in Natural Gas: Formation, Processing, and Applications. Volume 7: Natural Gas Products and Uses. Elsevier, 2024. P. 263. https://doi.org/10.1016/B978-0-443-19227-2.00014-9
  21. 21. Abdulrahman F., Wang Q., Angikath F., Sarathy S.M. // Int. J. Hydrog. Energy. 2024. V. 67. P. 750. https://doi.org/10.1016/j.ijhydene.2024.04.213
  22. 22. El-Melih A.M., Iovine L., Al Shoaibi A., Gupta A. K. // Int. J. Hydrog. Energy. 2017. V. 42. № 8. P. 4764. https://doi.org/10.1016/j.ijhydene.2016.11.096
  23. 23. Stagni A., Arunthanayothin S., Maffei L.P. et al. // Chem. Eng. J. 2022. V. 446. 136723. https://doi.org/10.1016/j.cej.2022.136723
  24. 24. Spatolisano E., De Guido G., Pellegrini L. A. et al. // Intern. J. Hydrog. Energy. 2022. V. 47. № 35. P. 15612. https://doi.org/10.1016/j.ijhydene.2022.03.090
  25. 25. Palma V., Vaiano V., Barba D. et al. // Ibid. 2015. V. 40. № 1. P. 106. https://doi.org/10.1016/j.ijhydene.2014.11.022
  26. 26. Bongartz D., Ghoniem A.F. // Combust. and Flame. 2015. V. 162. № 3. P. 544. https://doi.org/10.1016/j.combustflame.2014.08.019
  27. 27. Li Y., Yu X., Li H. et al. // Appl. Energy. 2017. V. 190. P. 824. https://doi.org/10.1016/j.apenergy.2016.12.150
  28. 28. Ibrahim S., Raj A. // Ind. Eng. Chem. Res. 2016. V. 55. № 24. P. 6743. https://doi.org/10.1021/acs.iecr.6b01176
  29. 29. Burra K.R.G., Bassioni G., Gupta A.K. // Intern. J. Hydrog. Energy. 2018. V. 43. № 51. P. 22852. https://doi.org/10.1016/j.ijhydene.2018.10.164
  30. 30. Cruchade H., Medeiros-Costa I.C., Nesterenko N. et al. // ACS Catalysis. 2022. V. 12. № 23. P. 14533. https://pubs.acs.org/doi/10.1021/acscatal.2c03747
  31. 31. Slimane R.B., Lau F.S., Khinkis M. et al. // Intern. J. Hydrog. Energy. 2004. V. 29. № 14. P. 1471. https://doi.org/10.1016/j.ijhydene.2004.02.004
  32. 32. Bingue J.P., Saveliev A.V., Fridman A.A., Kennedy L.A. // Ibid. 2002. V. 27. № 6. P. 643. https://doi.org/10.1016/S0360-3199 (01)00174-4
  33. 33. Bingue J.P., Saveliev A.V., Fridman A.A., Kennedy L.A. // Exp. Therm. Fluid Sci. 2002. V. 26. № 2–4. P. 409. https://doi.org/10.1016/S0894-1777 (02)00151-6
  34. 34. Toledo M., Arriagada A., Ripoll N., Salgansky E.A., Mujeebu M.A. // Renew. Sustain. Energy Rev. 2023. V. 177. 113213. https://doi.org/10.1016/j.rser.2023.113213
  35. 35. Dorofeenko S.O., Polianczyk E.V. // Fuel. 2021. V. 291. 120255. https://doi.org/10.1016/j.fuel.2021.120255
  36. 36. Makaryan I.A., Salgansky E.A., Arutyunov V.S., Sedov I.V. // Energies. 2023. V. 16. № 6. 2916. https://doi.org/10.3390/en16062916
  37. 37. Кислов В.М., Цветкова Ю.Ю., Цветков М.В. и др. // Физика горения и взрыва. 2023. Т. 59. № 2. С. 83. https://doi.org/10.15372/FGV20230210
  38. 38. Кислов В.М., Цветков М.В., Зайченко А.Ю. и др. // Хим. физика. 2023. Т. 42. № 8. С. 39. https://doi.org/10.31857/S0207401X2308006X
  39. 39. Салганский Е.А., Цветков М.В., Цветкова Ю.Ю. и др. // Хим. физика. 2022. Т. 41. № 11. C. 44. https://doi.org/10.1134/S1990793122060100
  40. 40. Polianczyk E., Tarasov G., Zaichenko A. // E3S Web Conf. 2024. V. 474. 01013. https://doi.org/10.1051/e3sconf/202447401013
  41. 41. Цветкова Ю.Ю., Кислов В.М., Пилипенко Е.Н., Салганская М.В., Цветков М.В. // Хим. физика. 2024. Т. 43. № 7. С. 91. https://doi.org/10.31857/S0207401X24070097
  42. 42. Arriagada A., Mena R., Ripoll N. et al. // Chem. Eng. J. 2024. V. 495. 153011. https://doi.org/10.1016/j.cej.2024.153011
  43. 43. Кислов В.М., Глазов С.В., Салганский Е.А., Колесникова Ю.Ю., Салганская М.В. // Физика горения и взрыва. 2016. Т. 52. С. 320. https://doi.org/10.1134/S0010508216030102
  44. 44. Салганская М.В., Глазов С.В., Салганский Е.А. и др. // Хим. физика. 2008. Т. 27. № 1. С. 20. https://doi.org/10.1134/S1990793108010119
  45. 45. Салганский Е. А., Цветков М.В., Зайченко А.Ю. Подлесный Д.Н., Седов И.В. // Хим. физика. 2021. Т. 40. № 11. С. 14. https://doi.org/10.1134/S1990793121060087
  46. 46. Савченко В.И., Зимин Я.С., Бузилло Э. и др. // Нефтехимия. 2022. Т. 62, № 3. С. 375. https://doi.org/10.31857/S0028242122030066
  47. 47. Tollini F., Sponchioni M., Calemma V., Moscatelli D. // Energy Fuels. 2023. V. 37. № 15. P. 11197. https://pubs.acs.org/doi/10.1021/acs.energyfuels.3c01237
  48. 48. Wang C.W., Li J., Zhang L.H. et al. // Fuel. 2024. V. 362. 130916. https://doi.org/10.1016/j.fuel.2024.130916
  49. 49. Трусов Б.Г. // Матер. XIV Междунар. конф. по хим. термодинамике. Спб: НИИХ СПбГУ, 2002. С. 483.
  50. 50. Арсентьев С.Д., Давтян А.Х., Манукян З.Х. и др. // Хим. физика. 2024. Т. 43. № 1. С. 39. https://doi.org/10.31857/S0207401X24010044
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library