- PII
- S0207401X25040027-1
- DOI
- 10.31857/S0207401X25040027
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 44 / Issue number 4
- Pages
- 11-18
- Abstract
- A thermodynamic assessment of the modes of non-catalytic conversion of acid gases and methane to produce syngas was carried out. The air and steam-air conversion modes of a mixture of hydrogen sulfide, carbon dioxide and methane were studied. Model compositions of gases with different contents of hydrogen sulfide (10, 20 and 30 vol.%) and methane (depending on the stoichiometric fuel excess coefficient) were considered. It has been shown that high temperature leads up the conversion of reagents and the syngas formation. With an increase in the amount of methane, the yield of hydrogen increased over the entire temperature range under consideration (1273–1873 K), but conversion rate of hydrogen sulfide decreased significantly. Increasing the amount of hydrogen sulfide in the initial mixture reduces the yield of synthesis gas. Adding water vapor in amounts up to 5 vol.% leads to an increase in the syngas yield and the [H2]/[CO] ratio. The maximum ratio H2/CO = 2.1 was achieved during air conversion of a mixture with 10 vol.% hydrogen sulfide with the same amount of CO2 with a stoichiometric fuel excess ratio of 10 and T = 1873 K.
- Keywords
- кислые газы сероводород диоксид углерода конверсия синтез-газ водород термодинамика
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 6
References
- 1. Chan Y.H., Lock S.S.M., Wong M.K. et al. // Environ. Pollut. 2022. V. 314. 120219. https://doi.org/10.1016/j.envpol.2022.120219
- 2. Chan Y.H., Loy A.C.M., Cheah K.W. et al. // Chem. Eng. J. 2023. V. 458. 141398. https://doi.org/10.1016/j.cej.2023.141398
- 3. Raj A., Ibrahim S., Jagannath A. // Prog. Energy Combust. Sci. 2020. V. 80. 100848. https://doi.org/10.1016/j.pecs.2020.100848
- 4. Abdalsamed I.A., Amar I.A., Al-abbasi A.A. et al. // Scientific J. Faculty Sci.-Sirte Univ. 2023. V. 3. № 1. P. 158. https://doi.org/10.37375/sjfssu.v3i1.74
- 5. Georgiadis A.G., Charisiou N.D., Goula M.A. // Catalysts. 2020. V. 10. № 5. P. 521. https://doi.org/10.3390/catal10050521
- 6. Gupta A.K., Ibrahim S., Al Shoaibi A. // Prog. Energy Combust. Sci. 2016. V. 54. P. 65. https://doi.org/10.1016/j.pecs.2015.11.001
- 7. Загоруйко А.Н., Шинкарев В.В., Ванаг С.В., Бухтиярова Г.А. // Катализ в промышленности. 2008. № S1. С. 52.
- 8. Guo S., Zhou F., Shan J. et al. // Fuel. 2024. V. 367. 131242. https://doi.org/10.1016/j.fuel.2024.131242
- 9. Ardeh A.Z., Fathi S., Ashtiani F.Z., Fouladitajar A. // Sep. Purif. Technol. 2024. V. 338. 126173. https://doi.org/10.1016/j.seppur.2023.126173
- 10. Ali S.M., Alkhatib I.I., AlHajaj A., Vega L.F. // J. Clean. Prod. 2023. V. 428. 139475. https://doi.org/10.1016/j.jclepro.2023.139475
- 11. Spatolisano E., De Guido G., Pellegrini L.A. et al. // J. Clean. Prod. 2022. V. 330. 129889. https://doi.org/10.1016/j.jclepro.2021.129889
- 12. Sedov I.V., Arutyunov V.S., Tsvetkov M.V. et al. // Eurasian Chem.-Technol. J. 2022. V. 24. № 2. P. 157. https://doi.org/10.18321/ectj1328
- 13. Makaryan I.A., Sedov I.V. // Russ. J. Appl. Chem. 2023. V. 96. № 6. P. 619. https://doi.org/10.1134/S1070427223060010
- 14. El-Melih A.M., Ibrahim S., Gupta A.K., Al Shoaibi A. // Appl. Energy. 2016. V. 164. P. 64. https://doi.org/10.1016/j.apenergy.2015.11.025
- 15. Scognamiglio S., Ciccone B., Ruoppolo G., Landi G. // Chem. Eng. Trans. 2024. V. 109. P. 277. https://doi.org/10.3303/CET24109047
- 16. Colom-Díaz J.M., Lecinena M., Peláez A. et al. // Fuel. 2020. V. 262. 116484. https://doi.org/10.1016/j.fuel.2019.116484
- 17. Dell’Angelo A., Andoglu E.M., Kaytakoglu S., Manenti F. // Chem. Prod. Process Model. 2023. V. 18. № 1. P. 117. https://doi.org/10.1515/cppm-2021-0044
- 18. Савельева В.А., Старик А.М., Титова Н.С., Фаворский О.Н. // Физика горения и взрыва. 2018. Т. 54. № 2. С. 15. https://doi.org/10.15372/FGV20180202
- 19. El-Melih A.M., Al Shoaibi A., Gupta A.K. // Appl. Energy. 2016. V. 178. P. 609. https://doi.org/10.1016/j.apenergy.2016.06.053
- 20. Kheirinik M., Rahmanian N. // Advances in Natural Gas: Formation, Processing, and Applications. Volume 7: Natural Gas Products and Uses. Elsevier, 2024. P. 263. https://doi.org/10.1016/B978-0-443-19227-2.00014-9
- 21. Abdulrahman F., Wang Q., Angikath F., Sarathy S.M. // Int. J. Hydrog. Energy. 2024. V. 67. P. 750. https://doi.org/10.1016/j.ijhydene.2024.04.213
- 22. El-Melih A.M., Iovine L., Al Shoaibi A., Gupta A. K. // Int. J. Hydrog. Energy. 2017. V. 42. № 8. P. 4764. https://doi.org/10.1016/j.ijhydene.2016.11.096
- 23. Stagni A., Arunthanayothin S., Maffei L.P. et al. // Chem. Eng. J. 2022. V. 446. 136723. https://doi.org/10.1016/j.cej.2022.136723
- 24. Spatolisano E., De Guido G., Pellegrini L. A. et al. // Intern. J. Hydrog. Energy. 2022. V. 47. № 35. P. 15612. https://doi.org/10.1016/j.ijhydene.2022.03.090
- 25. Palma V., Vaiano V., Barba D. et al. // Ibid. 2015. V. 40. № 1. P. 106. https://doi.org/10.1016/j.ijhydene.2014.11.022
- 26. Bongartz D., Ghoniem A.F. // Combust. and Flame. 2015. V. 162. № 3. P. 544. https://doi.org/10.1016/j.combustflame.2014.08.019
- 27. Li Y., Yu X., Li H. et al. // Appl. Energy. 2017. V. 190. P. 824. https://doi.org/10.1016/j.apenergy.2016.12.150
- 28. Ibrahim S., Raj A. // Ind. Eng. Chem. Res. 2016. V. 55. № 24. P. 6743. https://doi.org/10.1021/acs.iecr.6b01176
- 29. Burra K.R.G., Bassioni G., Gupta A.K. // Intern. J. Hydrog. Energy. 2018. V. 43. № 51. P. 22852. https://doi.org/10.1016/j.ijhydene.2018.10.164
- 30. Cruchade H., Medeiros-Costa I.C., Nesterenko N. et al. // ACS Catalysis. 2022. V. 12. № 23. P. 14533. https://pubs.acs.org/doi/10.1021/acscatal.2c03747
- 31. Slimane R.B., Lau F.S., Khinkis M. et al. // Intern. J. Hydrog. Energy. 2004. V. 29. № 14. P. 1471. https://doi.org/10.1016/j.ijhydene.2004.02.004
- 32. Bingue J.P., Saveliev A.V., Fridman A.A., Kennedy L.A. // Ibid. 2002. V. 27. № 6. P. 643. https://doi.org/10.1016/S0360-3199 (01)00174-4
- 33. Bingue J.P., Saveliev A.V., Fridman A.A., Kennedy L.A. // Exp. Therm. Fluid Sci. 2002. V. 26. № 2–4. P. 409. https://doi.org/10.1016/S0894-1777 (02)00151-6
- 34. Toledo M., Arriagada A., Ripoll N., Salgansky E.A., Mujeebu M.A. // Renew. Sustain. Energy Rev. 2023. V. 177. 113213. https://doi.org/10.1016/j.rser.2023.113213
- 35. Dorofeenko S.O., Polianczyk E.V. // Fuel. 2021. V. 291. 120255. https://doi.org/10.1016/j.fuel.2021.120255
- 36. Makaryan I.A., Salgansky E.A., Arutyunov V.S., Sedov I.V. // Energies. 2023. V. 16. № 6. 2916. https://doi.org/10.3390/en16062916
- 37. Кислов В.М., Цветкова Ю.Ю., Цветков М.В. и др. // Физика горения и взрыва. 2023. Т. 59. № 2. С. 83. https://doi.org/10.15372/FGV20230210
- 38. Кислов В.М., Цветков М.В., Зайченко А.Ю. и др. // Хим. физика. 2023. Т. 42. № 8. С. 39. https://doi.org/10.31857/S0207401X2308006X
- 39. Салганский Е.А., Цветков М.В., Цветкова Ю.Ю. и др. // Хим. физика. 2022. Т. 41. № 11. C. 44. https://doi.org/10.1134/S1990793122060100
- 40. Polianczyk E., Tarasov G., Zaichenko A. // E3S Web Conf. 2024. V. 474. 01013. https://doi.org/10.1051/e3sconf/202447401013
- 41. Цветкова Ю.Ю., Кислов В.М., Пилипенко Е.Н., Салганская М.В., Цветков М.В. // Хим. физика. 2024. Т. 43. № 7. С. 91. https://doi.org/10.31857/S0207401X24070097
- 42. Arriagada A., Mena R., Ripoll N. et al. // Chem. Eng. J. 2024. V. 495. 153011. https://doi.org/10.1016/j.cej.2024.153011
- 43. Кислов В.М., Глазов С.В., Салганский Е.А., Колесникова Ю.Ю., Салганская М.В. // Физика горения и взрыва. 2016. Т. 52. С. 320. https://doi.org/10.1134/S0010508216030102
- 44. Салганская М.В., Глазов С.В., Салганский Е.А. и др. // Хим. физика. 2008. Т. 27. № 1. С. 20. https://doi.org/10.1134/S1990793108010119
- 45. Салганский Е. А., Цветков М.В., Зайченко А.Ю. Подлесный Д.Н., Седов И.В. // Хим. физика. 2021. Т. 40. № 11. С. 14. https://doi.org/10.1134/S1990793121060087
- 46. Савченко В.И., Зимин Я.С., Бузилло Э. и др. // Нефтехимия. 2022. Т. 62, № 3. С. 375. https://doi.org/10.31857/S0028242122030066
- 47. Tollini F., Sponchioni M., Calemma V., Moscatelli D. // Energy Fuels. 2023. V. 37. № 15. P. 11197. https://pubs.acs.org/doi/10.1021/acs.energyfuels.3c01237
- 48. Wang C.W., Li J., Zhang L.H. et al. // Fuel. 2024. V. 362. 130916. https://doi.org/10.1016/j.fuel.2024.130916
- 49. Трусов Б.Г. // Матер. XIV Междунар. конф. по хим. термодинамике. Спб: НИИХ СПбГУ, 2002. С. 483.
- 50. Арсентьев С.Д., Давтян А.Х., Манукян З.Х. и др. // Хим. физика. 2024. Т. 43. № 1. С. 39. https://doi.org/10.31857/S0207401X24010044