RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

The absorption cross sections of cf₃o₂, chf₂o₂ and CF₂O radicals

PII
S0207401X25050051-1
DOI
10.31857/S0207401X25050051
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 5
Pages
40-48
Abstract
An investigation of photolysis of CHF₂Br, CF₃Br and CF₂ClBr in a mixture with oxygen was carried out at T = 298 K when the mixture was irradiated with a mercury lamp with a maximum radiation at a wavelength of λ = 253.7 nm. Absorption spectra were recorded in the range of 200–900 nm on a Specord M-40 spectrophotometer. The kinetics of photolysis was investigated by the consumption of the initial refrigerant and the accumulation of molecular bromine. The kinetic curves of changes in optical density depending on the irradiation time for CHF₂Br and CF₃Br refrigerants at wavelengths of 214, 224 and 240 nm had inflection points. This effect is explained by the accumulation of RO₂radicals, which in this region of the spectrum absorb UV radiation much more strongly than the original refrigerants. The coordinates of the inflection points made it possible to calculate the absorption cross sections of CF₃O₂ and CHF₂O₂ radicals at wavelengths of 214, 224 and 240 nm. For CF₂ClBr freon, the optical density at a wavelength of 222 nm decreased linearly during the entire irradiation time in accordance with the linear accumulation of photolysis products – BrCl and CF₂O. This allowed us to estimate the upper limit of the absorption cross-section of the CF₂O photolysis product.
Keywords
фотолиз химия атмосферы хладоны пероксидные радикалы сечение поглощения
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Ларин И.К., Белякова Т.И., Мессинева Н.А. и др. // Хим. физика. 2021. Т. 40. № 10. С. 36. https://doi.org/10.31857/S0207401X21100101
  2. 2. Noto T., Babushok V., Hamins A. et al. // Combust. and Flame. 1998. V. 112. № 1–2. P. 147. https://doi.org/10.1016/S0010-2180 (97)81763-4
  3. 3. Papanastasiou D.K., Carlon N.R., NEᵤman J.A. et al. // Geophys. Res. Lett. 2013. V. 40. №2. P. 464. https://doi.org/10.1002/grl.50121
  4. 4. Montreal Protocol on Substances that Deplete the Ozone Layer. United Nations Environment Programme (UNEP). Montreal: Halons Technical Options Committee (HTOC), 2006.
  5. 5. Natl. Inst. Stand. Special Publication 1069. Washington: U.S. Government Printing Office, 2007.
  6. 6. Ларин И.К. // Хим. физика. 2022. Т. 41. № 5. С. 317. https://doi.org/10.31857/S0207401X22050089
  7. 7. Linteris G.T., Fumiaki T., Katta V.R. // Combust. and Flame. 2007. V. 149. № 1–2. P. 91. https://doi.org/10.1016/j.combustflame.2006.12.013
  8. 8. Halocarbons: Ozone Depletion and Global Warming Overview. Washington: NASA, 2006.
  9. 9. Lightfoot P.D., Cox R.A., Crowley J.N. et al. // Atmos. Environ. Part A. 1992. V. 26. № 10. P. 1805. https://doi.org/10.1016/0960-1686 (92)90423-I
  10. 10. Biggs P., Canosa-Mas C.E., Fracheboud J.-M. et al. // Geophys. Res. Lett. 1995. V. 22. № 10. P. 1221. https://doi.org/10.1029/95GL01011
  11. 11. Nielsen O.J., Sehested J. // Chem. Phys. Lett. 1993. V. 213. P. 433. https://doi.org/10.1016/0009-2614 (93)89139-9
  12. 12. Wallington T.J., Hurley M.D., Schneider W.F. // Chem. Phys. Lett. 1993. V. 213. P. 442. https://doi.org/10.1016/0009-2614 (93)89140-D
  13. 13. Tyndall G.S., Cox R.A., Granier C. et al. // J. Geophys. Res. 2001. V. 106. № D11. P. 12157. https://doi.org/10.1029/2000JD900746
  14. 14. Wallington T.J., Dagaut P., Kurylo M.J. // Chem. Rev. 1992. V. 92. № 4. P. 667. https://doi.org/10.1021/cr00012a008
  15. 15. Nielsen O.J., Ellermann T., Sehested J. et al // Int. J. Chem. Kinet. 1992. V. 24. № 11. P. 1009. https://doi.org/10.1002/kin.550241111
  16. 16. Nielsen O.J., Ellermann T., Bartkiewicz E. et al. // Chem. Phys. Lett. 1992. V. 192. № 1. P. 82. https://doi.org/10.1016/0009-2614 (92)85432-A
  17. 17. Maricq M.M., Szente J.J. // J. Phys. Chem. 1992. V. 96. № 12. P. 4925. https://doi.org/10.1021/j100191a037
  18. 18. Wallington T.J., Ball J.C., Nielsen O.J. et al. // J. Phys. Chem. 1992. V.96(3). P. 1241. https://doi.org 10.1021/j100182a041
  19. 19. Barker J.R. Progress and Problems in Atmospheric Chemistry. Singapore: World Scientific Publishing Company, 1995. https://doi.org/10.1142/2455
  20. 20. Sehested J.. Atmospheric Chemistry of Hydrofluorocarbons and Hydrochlorocarbons. Roskilde, Denmark: Riso National Laboratory, 1995.
  21. 21. Семёнов Н.Н. Цепные реакции. М.: Наука, 1986.
  22. 22. Белякова Т.И., Ларин И.К., Мессинева Н.А. и др. // Хим. физика. 2018. Т. 37. № 3. С. 83. https://doi.org/10.7868/S0207401X18030123
  23. 23. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. Evaluation No. 17. JPL Publication 10-6. Pasadena, Jet Propulsion Laboratory, 2011. http://jpldataeval.jpl.nasa.gov.
  24. 24. Ларин И.К., Белякова Т.И., Мессинева Н.А. и др. // Кинетика и катализ. 2014. Т. 55. № 5. С. 577. https://doi.org/10.7868/S0453881114050086
  25. 25. Белякова Т.И., Ларин И.К., Мессинева Н.А. и др. // Кинетика и катализ. 2017. Т. 58. № 2. С. 115. https://doi.org/10.7868/S0453881117020010
  26. 26. Угаров А.А. Кандидатская диссертация на соискание степени кандидата физико-математических наук. М.: ИНЭПХФ РАН, 2003.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library