- PII
- S3034612625010092-1
- DOI
- 10.7868/S3034612625010092
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 44 / Issue number 1
- Pages
- 84-89
- Abstract
- Dielectric characteristics of polyvinyl alcohol films obtained from aqueous solutions of the polymer have been investigated. The results of low-frequency (25 Hz – 1 MHz) and high-frequency (9.8 GHz) measurements are presented. The influence of filtration of aqueous solution of polyvinyl alcohol on dielectric parameters of the studied samples was found. The IR spectra of both types of films are identical and correspond to the literature data.
- Keywords
- комплексная диэлектрическая проницаемость электропроводность ИК-спектроскопия поливиниловый спирт
- Date of publication
- 17.01.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 105
References
- 1. Reddy P.L., Deshmukh K., Chidambaram K. et al. // J. Mater. Sci. Mater. Electron. 2019. V. 30. Р. 4676. https://doi.org/10.1007/s10854-019-00761-y
- 2. Sahu G., Das M., Yadav M. et al. // Polymers. 2020. V. 12. 374. https://doi.org/10.3390/polym12020374
- 3. Asriani A., Santoso I. // J. Phys. Sci. Eng. 2021. V. 6. P. 10. https://doi.org/10.17977/um024v6i12021p010
- 4. Rani P., Ahamed M.B., Deshmukh K. // Mater. Res. Express. 2020. V. 7. 064008. https://doi.org/10.1088/2053-1591/ab9853
- 5. Rapisarda M., Malfense Fierro G.-P., Meo M. // Sci. Rep. 2021. V. 11. 10572. https://doi.org/10.1038/s41598-021-90101-0
- 6. Kim M.P., Um D.-S., Shin Y.-E. et al. // Nanoscale Res. Lett. 2021. V. 16. 35. https://doi.org/10.1186/s11671-021-03492-4
- 7. Викулова М.А., Цыганов А.Р., Артюхов Д.И. и др. // Хим. физика. 2023. T. 42. № 11. C. 3. https://doi.org/10.31857/S0207401X23110092
- 8. Симбирцева Г.В., Пивень Н.П., Бабенко С.Д. // Хим. физика. 2022. T. 41. № 4. C. 32. https://doi.org/10.31857/S0207401X22040094
- 9. Симбирцева Г.В., Бабенко С.Д., Перепелицина Е.О. и др. // Журнал физ. химии. 2023. T. 97. № 1. C. 175. https://doi.org/10.31857/S0044453723010302
- 10. Симбирцева Г.В., Бабенко С.Д. // Хим. физика. 2023. Т. 42. № 12. С. 64. https://doi.org/10.31857/S0207401X23120117
- 11. Kharazmi A., Faraji N., Hussin R. M. et al. // Beilstein J. Nanotechnol. 2015. V. 6. P. 529. https://doi.org/10.3762/bjnano.6.55
- 12. Deshmukh K., Basheer Ahamed M., Deshmukh R.R. et al. // Eur. Polym. J. 2016. V. 76. P. 14. https://doi.org/10.1016/j.eurpolymj.2016.01.022
- 13. El-Bashir S.M., Alwadai N.M., AlZayed N. // J. Mol. Struct. 2018. V. 1154. P. 239. https://doi.org/10.1016/j.molstruc.2017.09.043
- 14. Yeow Y.K., Abbas Z., Khalid K. et al. // Amer. J. Appl. Sci. 2010. V. 7. P. 270.
- 15. Amin E.M., Karmakar N., Winther-Jensen B. // Progr. Electromag. Res. B. 2013. V. 54. P. 149.
- 16. Cobos M., Fernández M. J., Fernández D. // Nanomaterials. 2018. V. 8. 1013. https://doi.org/10.3390/nano8121013
- 17. Reddy P. L., Deshmukh K., Kovářík T. et al. // Mater. Res. Express. 2020. V. 7. 064007. https://doi.org/10.1088/2053-1591/ab955f
- 18. Аллаяров С.Р., Корчагин Д.В., Аллаярова У.Ю. и др. // Химия высоких энергий. 2021. Т. 55. № 1. С. 42. https://doi.org/10.31857/S0023119321010022
- 19. Gil-Castell O., Cerveró R., Teruel-Juanes R. et al. // J Renew. Mater. 2019. V. 7. № 7. P. 655. https://doi.org/10.32604/jrm.2019.04401
- 20. Pan X., Debije M.G., Schenning A.P.H.J. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 28864. https://doi.org/10.1021/acsami.1c06415
- 21. Kandhol G., Wadhwa H., Chand S. et al. // Vacuum. 2019. V. 160. P. 384. https://doi.org/10.1016/j.vacuum.2018.11.051
- 22. Морозов Е.В., Ильичев А.В., Бузник В.М. // Хим. физика. 2023. T. 42. № 11. C. 54. https://doi.org/10.31857/S0207401X23110067
- 23. Подзорова М.В., Тертышная Ю.В., Храмкова А.В. // Хим. физика. 2023. T. 42. № 1. C. 35. https://doi.org/10.31857/S0207401X23010090
- 24. Simakov I. G., Gulgenov Ch. Zh., Bazarova S. B. // IOP Conf. Series: J. Phys. 2019. V. 1281. 012073. https://doi.org/10.1088/1742-6596/1281/1/012073