RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Self-propagating high-temperature synthesis of high-entropy carbides and borides: features of combustion

PII
S3034612625020034-1
DOI
10.7868/S3034612625020034
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 2
Pages
32-41
Abstract
Recently, works have appeared devoted to the production and study of high-entropy ceramics (HEC), in particular, high-entropy carbides and high-entropy borides. It is assumed that the properties of HEC, due to the distortion of the crystal structure, will exceed the properties of one or two-component borides and carbides. Previously, HEC containing high-entropy carbide and high-entropy boride were obtained by mechanical alloying in a ball mill and electric spark plasma sintering. The strength of this two-phase HEC exceeded the average strength of the high-entropy carbide and high-entropy boride included in its composition. The effect of the ratio of components and compression of samples on the combustion velocity, elongation of samples, morphology and phase composition of synthesis products in the system х(Ti+Hf+Zr+Nb+Ta+5С) + (1 – х)(Ti+Hf+Zr+Nb+Ta+10В) is investigated. With an increase in the content of boron in the composition of mixtures, the combustion velocity of the samples increased. A significant influence of impurity gas release on the combustion process of samples was discovered. Combustion velocity of compressed samples has increased significantly. The elongation of the samples increased with an increase in the carbon content of the mixture. Due to the significant elongation, the synthesis products had high porosity, and powders were easily obtained from them. By the XRD method, reflexes of the high entropy diboride [Ti, Hf, Zr, Nb, Ta]B2 were recorded in the composition of the combustion products of the mixture Ti+Hf+Zr+Nb+Ta+10B. Three multi-element carbides have been identified in the composition of the synthesis products of the Ti+Hf+Zr+Nb+Ta+5C mixture: medium-entropy [Ti, Hf, Ta]C and two high-entropy [Ti, Hf, Zr, Ta]C and [Ti, Hf, Zr, Nb,Ta]C. The combustion products of a mixture of 50%(Ti+Hf+ +Zr+Nb+Ta+5C)+50%(Ti+Hf+Zr+Nb+Ta+10B) contain five multi-element high-entropy phases: two diborides and three carbides based on metal solid solutions. In this work, high-entropy ceramics containing high-entropy carbides and borides were obtained for the first time using the SHS method. The SHS method allows synthesis to be carried out in one stage, varying the composition of the products. The results of the work can be used to obtain high-entropy ceramics in the system х(Ti+Hf+Zr+Nb+Ta+5С)+(1-х)(Ti+Hf+Zr+Nb+Ta +10В).
Keywords
горение самораспространяющийся высокотемпературный синтез высокоэнтропийныя керамика высокоэнтропийные карбиды и бориды примесное газовыделение среднеэнтропийные карбиды переходные металлы тугоплавкие металлы
Date of publication
17.02.2025
Year of publication
2025
Number of purchasers
0
Views
69

References

  1. 1. Сычев А. Е., Вадченко С.Г., Щукин А.С. и д.р. // Хим. физика. 2022. Т. 41. № 1. С. 69. https://doi.org/10.31857/S0207401X22010150
  2. 2. Вадченко С.Г., Алымов М.И. // Хим. физика. 2022. Т. 41. № 3. С. 22. https://doi.org/10.31857/S0207401X2203013X
  3. 3. Basu B., Raju G.B., Suri A.K. // Intern. Mater. Rev. 2006. V. 51. № 6. P. 352. https://doi.org/10.1179/174328006X102529
  4. 4. Vallauri D., Atías Adrián I.C., Chrysanthou A. // J. Eur. Ceram. Soc. 2008. V. 28. № 8. P. 1697. https://doi.org/10.1016/j.jeurceramsoc.2007.11.011
  5. 5. Rogachev A. S., Mukasyan A. S. Combustion for Material Synthesis. N. Y.: CRC Press, Taylor & Francis Group, 2015.
  6. 6. Fahrenholtz W.E., Greg E., Hilmas G.E. // Scripta Mater. 2017. V. 129. P. 94. https://doi.org/10.1016/j.scriptamat.2016.10.018
  7. 7. Акопян А.Г., Долуханян С.К., Боровинская И.П. // Физика горения и взрыва. 1978. Т. 14. № 3. С. 70.
  8. 8. Боровинская И.П., Мержанов А.Г., Новиков Н.П. и др. // Там же. 1974. Т. 10. № 1. C. 3.
  9. 9. Cantor B., Chang I.T.H., Knight P. et al. // Mater. Sci. Eng., A. 2004. V. 375. P. 213. https://doi.org/10.1016/j.msea.2003.10.257
  10. 10. Кочетов Н.А., Рогачев А.С., Щукин А.С. и др. // Изв. вузов. Порошк. металлургия и фукц. покрытия. 2018. № 2. С. 35. https://doi.org/10.17073/1997-308X-2018-2-35-42
  11. 11. Rogachev A.S., Fourmont А., Kovalev D.Yu. et al. // Powder Techn. 2022. V. 399. 117187. https://doi.org/10.1016/j.powtec.2022.117187
  12. 12. Zhang Z., Sheng H., Wang Z. et al. // Nat. Commun. 2017. V. 8. 14390. P. 1. https://doi.org/10.1038/ncomms14390
  13. 13. Laplanche G., Kostka A., Reinhart C. et al. // Acta Mater. 2017. V.128. P. 292. https://doi.org/10.1016/j.actamat.2017.02.036
  14. 14. Braic V., Vladescu A., Balaceanu M. et al. // Surf. Coat. Technol. 2012. V. 211. P. 117. https://doi.org/10.1016/j.surfcoat.2011.09.033
  15. 15. Yan X, Constantin L., Lu Y.F. et al. // J. Am. Ceram. Soc. 2018. V. 101. №. 10. P. 4486. https://doi.org/10.1111/jace.15779
  16. 16. Moskovskikh D.O., Vorotilo S., Sedegov A.S. et al. // Ceram. Intern. 2020. V. 46. P. 19008. https://doi.org/10.1016/j.ceramint.2020.04.230.
  17. 17. Kovalev D. Yu, Kochetov N.A., Chuev I.I. // Ibid. 2021. V. 47. P. 32626. https://doi.org/10.1016/j.ceramint.2021.08.158.
  18. 18. Кочетов Н.А., Ковалев И.Д. // Изв. вузов. Порошк. металлургия и функц. покрытия. 2022. Т. 16. №. 4. С. 58. https://doi.org/dx.doi.org/10.17073/1997-308X-2022- 4-58-66
  19. 19. Tallarita G., Roberta Licheri R., Garroni S. et al. // Scripta Mater. 2019. V. 158. P. 100. https://doi.org/10.1016/j.scriptamat.2018.08.039
  20. 20. Gild J., Zhang Y., Harrington T. et al. // Scientific Rep. 2016. V. 6. 37946. https://doi.org/10.1038/srep37946
  21. 21. Liu D., Wen T., Ye B., Chu Y. // Scripta Materialia. 2019. V. 167. P. 110. https://doi.org/10.1016/j.scriptamat.2019.03.038
  22. 22. Kochetov N.A., Rogachev A.S., Kovalev I.D., Vadchenko S.G. // Intern. J. Self-Propag. High-Temp. Synth. 2021. V. 30. №. 4. P. 223. https://doi.org/10.3103/S106138622104004X
  23. 23. Mayrhofer P.H., Kirnbauer A., Ertelthaler P., Kolle C.M. // Scripta Mater. 2018. V. 149. P. 93. https://doi.org/10.1016/j.scriptamat.2018.02.008
  24. 24. Qin M., Gild J., Hu Ch. et al. // J. Europ. Ceram. Soc. 2020. V. 40. № 15. P. 5037. https://doi.org/10.1016/j.jeurceramsoc.2020.05.040
  25. 25. Moshtaghioun B. M., Gomez-Garcia D., Dominguez-Rodriguez A., Todd R.I. // J. Europ. Ceram. Soc. 2016. V. 36. № 7. P. 1829. https://doi.org/10.1016/j.jeurceramsoc.2016.01.017
  26. 26. Krell A., Blank P. // J. Amer. Ceram. Soc. 1995. V. 78. № 4. P. 1118. https://doi.org/10.1111/j.1151-2916.1995.tb08452.x
  27. 27. Кочетов Н.А. // Хим. физика. 2022. Т. 41. № 7. С. 39. https://doi.org/10.31857/S0207401X2207007X
  28. 28. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2023. Т. 42. № 3. С. 23. https://doi.org/10.31857/S0207401X23030081
  29. 29. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2022. Т. 41. № 1. С.42. https://doi.org/10.31857/S0207401X22010071
  30. 30. Шкиро В. М., Нерсисян Г.А., Боровинская И.П. // Физика горения и взрыва. 1978. Т. 14. № 4. С. 58.
  31. 31. Kecskes L. J., Niiler A. // J. Amer. Ceram. Soc. 1989. V. 72. № 4. P. 655. https://doi.org/10.1111/j.1151-2916.1989.tb06190.x
  32. 32. Щербаков В. А., Сычев А.Е., Штейнберг А.С. // Физика горения и взрыва. 1986. Т. 22. № 4. С. 55.
  33. 33. Kamynina O.K., Rogachev A.S., Sytschev A.E. et al. // Intern. J. Self-Propag. High-Temp. Synth. 2004. V. 13, № 3. P. 193.
  34. 34. Камынина О.К., Рогачев А.С., Умаров Л.М. // Физика горения и взрыва. 2003. Т. 39. № 5. С. 69.
  35. 35. Вершинников В.И., Филоненко А.К. // Там же. 1978. Т. 39.Т. 14. № 5. С. 42.
  36. 36. Сеплярский Б.С. // Докл. РАН. 2004. Т.396. № 5. С. 640.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library