RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Dynamics and depth of the conversion of water vapor into hydrogen during combustion of aluminum nanopowder in steam

PII
S3034612625020061-1
DOI
10.7868/S3034612625020061
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 2
Pages
63-72
Abstract
The paper presents the results of numerical simulation of the hydrogen production process during the combustion of aluminum nanopowder in water vapor. The calculations assumed that the configuration of the oxide coating on aluminum nanoparticles at the melting point of the oxide and above is thermodynamically equilibrium (oxide “cap”). Numerical experiments have revealed the influence of aluminum particle sizes, stoichiometry of reagents, as well as the mass fraction of the oxide coating on the depth of water vapor conversion to hydrogen. It was found that, despite pronounced exothermicity and concomitant high temperatures (T ≈ 3000 K and above), the process under consideration provides a significant depth of conversion of water vapor into hydrogen. At the same time, the initial oxide coating has a rather weak effect on the hydrogen output, and the rate of the combustion process, although it decreases with an increase in the mass fraction of the oxide in the system at the initial time, is also not too pronounced.
Keywords
горение наночастицы алюминия водяной пар водород
Date of publication
17.02.2025
Year of publication
2025
Number of purchasers
0
Views
111

References

  1. 1. Dincer I. // Intern. J. Hydrogen Energy 2002. V. 27. № 3. P. 265. https://doi.org/10.1016/S0360-3199 (01)00119-7
  2. 2. Паланкоева А.С., Беляев А.А., Арутюнов В.С. // Хим. физика. 2022. Т. 41. № 6. С. 7. https://doi.org/10.31857/S0207401X22060097
  3. 3. Дорофеенко С.О., Полианчик Е.В. // Хим. физика. 2022. Т. 41. № 3. С. 29. https://doi.org/10.31857/S0207401X22030049
  4. 4. Кислов В.М., Цветков М.В., Зайченко А.Ю. и др. // Хим. физика. 2023. Т. 42. № 8. С. 39. https://doi.org/10.31857/S0207401X2308006X
  5. 5. Егоров А.Г., Тизилов А.С. // Хим. физика. 2023. Т. 42. № 4. С. 47. https://doi.org/10.31857/S0207401X23040076
  6. 6. Цветков М.В., Кислов В.М., Цветкова Ю.Ю. и др. // Хим. физика. 2022. Т.41. № 8. C. 93. https://doi.org/10.31857/S0207401X22080143
  7. 7. Шейндлин А.Е., Битюрин В.А., Жук А.З. и др. // Докл. АН. Энергетика. 2009. Т. 425. № 4. С. 484.
  8. 8. Franzoni F., Milani M., Montorsi L. et al. // Intern. J. Hydrogen Energy. 2010. V. 35. № 4. P.1548. https://doi.org/10.1016/j.ijhydene.2009.11.107
  9. 9. Huang Y., Risha G., Yang V. et al. // Proc. 43-rd AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper 2005-738. https://doi.org/10.2514/6.2005-738
  10. 10. Starik A.M., Kuleshov P.S., Sharipov A.S. et al. // Combust. and Flame. 2014. V. 161. № 6. P. 1659. https://doi.org/10.1016/j.combustflame.2013.12.00710
  11. 11. Старик А.М., Савельев А.М., Титова Н.С. // Физика горения и взрыва. 2015. № 2. С. 64. https://rucont.ru/efd/356326
  12. 12. Storozhev V.B., Yermakov A.N. // Combust. and Flame. 2015. V. 162. № 11. P. 4129. https://doi.org/10.1016/j.combustflame.2015.08.013
  13. 13. Sundaram D., Yang V., Yetter R. // Prog. Energy Combust. Sci. 2017. V. 61. P.293. https://doi.org/10.1016/j.pecs.2017.02.002
  14. 14. Valiullin T.R., Egorov R.I., Strizhak P.A. // Energy Fuels. 2017. V.31. P.1044-1046. http://dx.doi.org/10.1021/acs.energyfuels.6b02540
  15. 15. Price E.W., Sigman R.K. // Progress in Astronautics and Aeronautics, V. 185: Solid Propellant Chemistry Combustion and Motor Interior Ballistics Eds. Yang V., Brill T.B., Ren W.Z., eds., N. Y. AIAA, 2000. P. 663. https://arc.aiaa.org/doi:10.2514/4.866562
  16. 16. Babuk V.A., Vassiliev V.A., Sviridov V.V. // Ibid. P. 749. https://arc.aiaa.org/doi:10.2514/4.866562
  17. 17. Melcher J.C., Krier H., Burton R.L. // J. Propul. Power. 2002. V. 18. № 3. P. 631. https://doi.org/10.2514/2.5977
  18. 18. Крайнов А.Ю., Порязов В А., Моисеева К.М. и др. // Инж.-физ. журн. 2021. Т. 94, №1, С. 84.
  19. 19. Huang Y., Risha G., Yang V. et al. // Combust. and Flame 2009. V. 156. № 1. P. 5. https://doi.org/10.1016/j.combustflame.2008.07.018
  20. 20. Storozhev V.B., Yermakov A.N. // Combust. and Flame. 2018. V. 190. P. 103. https://doi.org/10.1016/j.combustflame.2017.11.014
  21. 21. Storozhev V.B., Yermakov A.N. // Combust. and Flame. 2021. V. 226. P. 182. https://doi.org/10.1016/j.combustflame.2020.11.040
  22. 22. Ген М.Я., Фролов Ю.В., Сторожев В.Б. // Физика горения и взрыва. 1978. Т. 14, № 5. С. 153.
  23. 23. Glorian J., Gallier S., Catoire L. // Combust. Flame. 2016. V. 168. P. 378. https://doi.org/10.1016/j.combustflame.2016.01.022
  24. 24. Lynch P., Fiore G., Krier H. // Combust. Sci. Technol. 2010. V. 182. № 7. P. 842. https://doi.org/10.1080/00102200903341561
  25. 25. Storozhev V.B. // Surf. Sci. 1998. V.397. P. 170. https://doi.org/10.1016/S0039-6028 (97)00729-2
  26. 26. Storozhev V.B. // Aerosol Sci. Technol. 2001. V. 34. P.179. https://doi.org/10.1080/027868201300034781
  27. 27. Dreizin E.L. // Combust. and Flame. 1996. V. 105. P. 541. https://doi.org/10.1016/0010-2180 (95)00224-3
  28. 28. Beckstead M.W. // Combust. Explos. Shock Waves. 2005. V.41. P. 533. https://doi.org/10.1007/s10573-005-0067-2
  29. 29. Bergthorson J.M., Julien Ph., Goroshin S., et al. // Combust. Flame. 2016. V. 171. P. 262. https://doi.org/10.1016/j.combustflame.2016.06.002
  30. 30. Bazyn T., Krier H., Glumac N. // Ibid. 2006. V.145. № 4. P.703. https://doi.org/10.1016/j.combustflame.2005.12.017
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library