- PII
- S3034612625100016-1
- DOI
- 10.7868/S3034612625100016
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 44 / Issue number 10
- Pages
- 3-15
- Abstract
- The formation of pyrolysis gaseous products from initial and demineralized tableted brown coal microparticles under the influence of microsecond laser pulses (1064 nm, 120 μs, 6 Hz, 0.3–1.9 J/cm) was studied. When the threshold values of the energy density of laser pulses are exceeded, the formation of gases H, CH, CO and CO begins. Their concentration increases linearly with the growth of the energy density . The rate of formation of H is 3.5 times higher for demineralized samples than for the initial ones.
- Keywords
- лазерный пиролиз бурый уголь деминерализация газообразные продукты синтез-газ абляция катализ масс-спектрометрия
- Date of publication
- 20.03.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 68
References
- 1. He Q., Gong Y., Ding L. et al. // Energy. 2021. № 229. P. 120724. https://doi.org/10.1016/j.energy.2021.120724
- 2. Meshram P., Shina M.K., Sahu S.K., Pandey B.D. // Proc. 16th Intern. Conf. on Non-ferrous metals. New Delhi, 2012. P. 1.
- 3. Gulen J. // Energy Sources. Part A: Recovery, Utilization, and Environmental Effects. 2007. P. 231. https://doi.org/10.1080/009083190965514
- 4. Филиппенко Ю.Н., Рудавина Е.В., Чернявский Н.В // Современная наука: сб. науч. статей. 2010. № 1(3). С. 44.
- 5. Filippenko Yu. N., Rudavina E. V., Chernyavsky N. V. // Modern science: collection of scientific articles. 2010. № 1(3). P. 44.
- 6. Алехнович А.Н. // Энергетик. 2008. № 3. С. 8.
- 7. Alekhnovich A.N. // Energetic. 2008. №. 3. P. 8.
- 8. Смирнов В.Н., Шубин Г.А., Арутюнов А.В. и др. // Хим. физика. 2022. T. 41. № 11. С. 52. https://doi.org/10.31857/S0207401X22110115
- 9. Smirnov V.N., Shubin G.A., Arutyunov A.V. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 1092. https://doi.org/10.1134/s1990793122060112
- 10. Дорофеенко С.О., Полианчик Е.В. // Хим. физика. 2022. T. 41. № 3. С. 29. https://doi.org/10.31857/S0207401X22030049
- 11. Dorofeenko S.O., Polianczyk E.V. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 242. https://doi.org/10.1134/S199079312202004X
- 12. Герасимов Г.Я., Хасхачих В.В., Сычев Г.А. и др. // Хим. физика. 2022. Т. 41. № 11. С. 24. https://doi.org/10.31857/S0207401X22110048
- 13. Gerasimov G.Ya., Khaskhachikh V.V., Sychev G.A. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 1067. https://doi.org/10.1134/s1990793122060045
- 14. Цветков М.В., Кислов В.М., Цветкова Ю.Ю. и др. // Хим. физика. 2022. T. 41. № 8. С. 93. https://doi.org/10.31857/S0207401X22080143
- 15. Tsvetkov M.V., Kislov V.M., Tsvetkova Yu.Yu. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 711. https://doi.org/10.1134/s1990793122040315
- 16. Karn F.S., Friedel R.A., Sharkey A.G., Jr. // Carbon. 1967. V. 5. № 1. P. 25. https://doi.org/10.1016/0008-6223 (67)90102-9
- 17. Shultz J.L., Sharkey A.G., Jr. // Carbon. 1967. V. 5. № 1. P. 57. https://doi.org/10.1016/0008-6223 (67)90106-6
- 18. Hanson R.L., Brookins D., Vanderborgh N.E. // Anal. Chem. 1976. V. 48. № 14. P. 2210. https://doi.org/10.1021/ac50008a040
- 19. Hanson R.L., Vanderborgh N.E., Brookins D.G. // Anal. Chem. 1977. V. 49. № 3. P. 390. https://doi.org/10.1021/ac50011a016
- 20. Stout S.A., Hall K. // J. Anal. Appl. Pyrolysis. 1991. V. 21. № 1–2. P. 195. https://doi.org/10.1016/0165-2370 (91)80025-4
- 21. Pyatenko A.T., Bukhman S.V., Lebedinskii V. et al. // Fuel. 1992. V. 71. № 6. P. 701. https://doi.org/10.1016/0016-2361 (92)90175-N
- 22. Maswadeh W., Arnold N.S., McClennen W.H. et al. // Energy Fuels. 1993. V. 7. № 6. P. 1006. https://doi.org/10.1021/ef00042a044
- 23. Seyitliyev D., Kholikov K., Grant B. et al. // Int. J. Hydrogen Energy. 2017. V. 42. № 42. P. 26277. https://doi.org/10.1016/j.ijhydene.2017.08.149
- 24. Karn F.S., Friedel R.A., Sharkey A.S. // Fuel. 1972. V. 51. № 2. P. 113. https://doi.org/10.1016/0016-2361 (72)90059-2
- 25. Li Y., Hua F., An H., Cheng Y. // Fuel. 2021. V. 283. P. 119290. https://doi.org/10.1016/j.fuel.2020.119290
- 26. Li C.Z. // Fuel. 2007. V. 86. № 12–13. P. 1664. https://doi.org/10.1016/j.fuel.2007.01.008
- 27. Samaras P. // Fuel. 1996. V. 75. № 9. P. 1108. https://doi.org/10.1016/0016-2361 (96)00058-0
- 28. Dolgaev S.I., Lavrishev S.V., Lyalin A.A. et al. // Appl. Phys. A. 2001. V. 73. P. 177. https://doi.org/10.1007/s003390100530
- 29. Young J.F., Sipe J.E., Driel H.M. // Phys. Rev. B. 1984. V. 30. P. 2001. https://doi.org/10.1103/PhysRevB.30.2001
- 30. Tomkow K., Sieminiewska T., Jankowska A. et al. // Fuel. 1986. V. 65. № 10. P. 1423. https://doi.org/10.1016/0016-2361 (86)90117-1
- 31. Qian L., Xue J., Tao C. et al. // Intern. J. Coal Sci. Technol. 2023. V. 10. № 21. P. 20. https://doi.org/10.1007/s40789-023-00576-7
- 32. Lin D., Qiu P., Xie X. et al.// Energy Sources, Part A: Recovery, Utilization, And Environmental Effects. 2017. https://doi.org/10.1080/15567036.2017.1403504
- 33. Sert M., Ballice L., Yuksel M. et al. // Ind. Eng. Chem. Res. 2011. V. 50. P. 10400. https://doi.org/10.1021/ie2008604
- 34. Zhu W., Song W., Lin W. // Energy Fuels. 2008. V. 22. P. 2482. https://doi.org/10.1021/ef800143h
- 35. Zhao Y., Zhang W., Wang P. et al. // Intern. J. Hydrogen Energy. 2018. V. 43. P. 10991. https://doi.org/10.1016/j.ijhydene.2018.04.240
- 36. Адуев Б.П., Нурмухаметов Д.Р., Нелюбина Н.В. и др. // Хим. физика. 2023. T. 42. № 3. С. 3. https://doi.org/10.31857/S0207401X23030032
- 37. Aduev B.P., Nurmukhametov D.R., Nelyubina N.V. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 361. https://doi.org/10.1134/S1990793123020033
- 38. Адуев Б.П., Нурмухаметов Д.Р., Ковалев Р.Ю., Крафт Я.В. // Оптика и спектроскопия. 2018. Т. 125(2). С. 277. https://doi.org/10.21883/OS.2018.08.46373.29
- 39. Aduev B.P., Nurmukhametov D.R., Kovalev R.Y. et al. // Optics and Spectroscopy. 2018. V. 125. № 2. С. 293. https://doi.org/10.1134/S0030400X18080039
- 40. Адуев Б.П., Нурмухаметов Д.Р., Нелюбина Н.В. и др. // ЖПС. 2021. Т. 88. № 4. С. 564.
- 41. Aduev B.P., Nurmukhametov D.R., Nelyubina N.V. et al. // J. Appl. Spectrosc. 2021. V. 88. P. 761. https://doi.org/10.1007/s10812-021-01237-w
- 42. Крафт Я.В., Адуев Б.П., Нелюбина Н.В. и др. // Химия в интересах устойчивого развития. 2022. Т. 30. № 5. С. 517. https://doi.org/10.15372/KhUR2022409
- 43. Kraft Ya.V., Aduev B.P., Nelyubina N.V. et al. // Chemistry for Sustainable Development. 2022. V. 30. № 5. P. 496. https://doi.org/10.15372/CSD2022409
- 44. Aduev B.P., Volkov V.D. // Bull. Lebedev Physics Institute. 2024. V. 51. P. S66. https://doi.org/10.3103/S1068335624600116
- 45. Song Q., Zhao H., Jia J. et al. // Jia J. Analyt. Appl. Pyrolysis. 2020. V. 145. P. 104716. https://doi.org/10.1016/j.jaap.2019.104716
- 46. McKee D.W. // Carbon. 1979. V. 17. P. 419. https://doi.org/10.1016/0008-6223 (79)90058-7
- 47. Wang Z., Tan J., He Y. et al. // Energy Fuels. 2019. V. 33. P. 9437. https://doi.org/10.1021/acs.energyfuels.9b01342
- 48. Sun M., Wang Q., He C. et al. // Fuel . 2019. V. 253. P. 409. https://doi.org/10.1016/j.fuel.2019.04.154
- 49. Liu H., Xu L., Zhao D. et al. // Fuel Proc. Technol. 2018. V. 179 P. 399. https://doi.org/10.1016/j.fuproc.2018.07.032
- 50. Булгаков А.В., Булгакова Н.М. // Квантовая электрон. 1999. Т. 27. № 2. С. 154.
- 51. Bulgakov A.V., Bulgakov N.M. // Quantum Electron. 1999. V. 29. P. 433. https://doi.org/10.1070/QE1999v029n05ABEH001503