RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

ION ACCUMULATION BY SPHERICAL CLOUDS OF MICROPARTICLES IN THE IONIZED ATMOSPHERE

PII
S3034612625100079-1
DOI
10.7868/S3034612625100079
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 10
Pages
70-80
Abstract
The parameters of low-pressure electric discharge plasma in neon with microparticles have been calculated, at which spherical clouds of charged microparticles have been experimentally obtained. The indices determining the efficiency of ion accumulation by spherical clouds are formulated and the character of change of these indices for microparticles of different sizes depending on gas and microparticle concentrations is determined. The parameters of spherical cloud formation in terms of pressure and temperature of the experimental medium were compared with the parameters of the standard atmosphere at different altitudes.
Keywords
ионизованная атмосфера газовый разряд облако заряженных микрочастиц комплексная плазма кулоновская сфера эффективность накопления ионов
Date of publication
20.03.2025
Year of publication
2025
Number of purchasers
0
Views
82

References

  1. 1. Голубков М.Г., Суворова А.В., Дмитриев А.В., Голубков Г.В. // Хим. физика. 2020. Т. 39. № 10. С. 69. https://doi.org/10.31857/S0207401X20100064
  2. 2. Golubkov M.G., Suvorova A.V., Dmitriev A.V., Golubkov G.V. // Russ. J. Phys. Chem. B. 2020. V. 14. P. 873. https://doi.org/10.1134/S1990793120050206
  3. 3. Чэнсюнь Ю., Чжицзянь Л., Бычков В.Л. и др. // Хим. физика. 2022. Т. 41. № 10. С. 28. https://doi.org/10.31857/S0207401X22100041
  4. 4. Chengxun Y., Zhijian L., Bychkov V.L. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 955. https://doi.org/10.1134/S1990793122050189
  5. 5. Bychkov V.L. Natural and Artificial Ball Lightning in the Earth’s Atmosphere. Cham: Springer, 2022. https://doi.org/10.1007/978-3-031-07861-3
  6. 6. Bychkov V.L., Golubkov G.V., Nikitin A.I. The Atmosphere and Ionosphere. Elementary Processes, Discharges and Plasmoids. Heidelberg: Springer, 2013.
  7. 7. Surkov V.V., Hayakawa M. // Surv. Geophys. 2020. V. 41. P. 1101. https://doi.org/10.1007/s10712-020-09597-2
  8. 8. Siingh D., Singh R.P., Singh A.K. et al. // Space Sci. Rev. 2012. V. 169. P. 73. https://doi.org/10.1007/s11214-012-9906-0
  9. 9. Голубков М.Г., Суворова А.В., Дмитриев А.В., Голубков Г.В. // Хим. физика. 2024. Т. 43. № 6. С. 105. https://doi.org/10.31857/S0207401X24060117
  10. 10. Golubkov M.G., Suvorova, A.V., Dmitriev, A.V. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 1449. https://doi.org/10.1134/S1990793124340050
  11. 11. Kostrov A.V.// Plasma Phys. Rep. 2020. V. 46. P. 443. https://doi.org/10.1134/S1063780X20040066
  12. 12. Pasko V.P. // Plasma Sources Sci. Technol. 2007. V. 16. P. S13. https://iopscience.iop.org/article/10.1088/09630252/16/1/S02
  13. 13. Tarasenko V., Vinogradov N., Baksht E., Sorokin D. // J. Atmos. Sci. Res. 2022. V. 5. Is. 3. P. 26. https://doi.org/10.30564/jasr.v5i3.4858
  14. 14. Климов А.И., Бровкин В.Г., Пащина А.С. // Хим. физика. 2024. Т. 43. № 10. С. 81. https://doi.org/10.31857/S0207401X24100074
  15. 15. Klimov A.I., Brovkin V.G., Pashchina A.S. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 1415. https://doi.org/10.1134/S1990793124701136
  16. 16. Carrillo-Sanchez J.D., Nesvorny D., Pokorny P. et al. // Geophys. Res. Lett. 2016. V. 43, P. 11,979. https://doi.org/10.1002/2016GL071697
  17. 17. Esposito F., Molinaro R., Popa C.I. et al. // Geophys. Res. Lett. 2016. V. 43.P. 5501. https://doi.org/10.1002/2016GL068463
  18. 18. Василяк Л.М., Шубралова Е.В., Чикирев В.Н. // Прикл. физика. 2024. № 6. С. 5. (https://applphys.orion-ir.ru/appl-24/24-6/PF-24-6-005_RU.pdf). https://doi.org/10.51368/1996-0948-2024-6-5-10
  19. 19. Vasilyak L.M., Shubralova E.V. & Chikirev V.N. // J. Commun. Technol. Electron. 2025. https://doi.org/10.1134/S1064226925700093
  20. 20. Solomon S., Daniel J.S., Neely III R.R. et al. // Science. 2011. V. 333. P. 866. https://www.science.org/doi/10.1126/science.1206027
  21. 21. Pustylnik M.Y., Pikalev A.A., Zobnin A.V. et al. // Contrib. Plasma Phys. 2021. V. 61. P. e202100126. https://doi.org/10.1002/ctpp.202100126
  22. 22. Клумов Б.А., Морфилл Г.Е., Попель С.И. // ЖЭТФ. 2005. Т. 127. Вып. 1. С. 171.
  23. 23. Klumov B.A., Morfill G.E., and Popel S.I. // J. Exp. Theor. Phys. 2005. V. 100. P. 152. https://doi.org/10.1134/1.1866207
  24. 24. Fortov V.E., Morfill G.E.Complex and Dusty Plasmas: From Laboratory to Space. New-York: CRC Press, 2009.
  25. 25. Polyakov D.N., Shumova V.V., Vasilyak L.M. // J. Phys.: Conf. Ser. 2018. V. 1058. P. 012029. https://iopscience.iop.org/article/10.1088/17426596/1058/1/012029
  26. 26. Polyakov D.N., Shumova V.V., Vasilyak L.M. // Plasma Sources Sci. Technol. 2019. V. 28. P. 065017. https://doi.org/10.1088/1361-6595/ab2185
  27. 27. Petrov O.F., Fortov V.E. // Contrib. Plasma Phys. 2013. V. 53. P. 767. https://doi.org/10.1002/ctpp.201310052
  28. 28. Turner D.J. // J. Sci. Exploration. 2024. V. 38. № 3. P. 399. https://doi.org/10.31275/20242943
  29. 29. Polyakov D.N., Shumova V.V., Vasilyak L.M. // Phys. Lett. A. 2021. V. 389. P. 127082. https://doi.org/10.1016/j.physleta.2020.127082
  30. 30. Поляков Д.Н., Шумова В.В., Василяк Л.М. // Хим. физика. 2023. Т. 42. № 10. С. 91. https://doi.org/10.31857/S0207401X23100126
  31. 31. Polyakov D.N., Shumova V.V., Vasilyak L.M. // Russ. J. Phys. Chem. B. 2023. V. 17. № 5. P. 1241. https://doi.org/10.1134/S1990793123050263
  32. 32. Polyakov D.N., Shumova V.V., Vasilyak L.M. // Plasma Sources Sci. Technol. 2022. V. 31. № 7. P. 074001. https://doi.org/10.1088/1361-6595/ac7c36
  33. 33. Polyakov D.N., Shumova V.V., Vasilyak L.M. // J. Phys.: Conf. Ser. 2018. V. 946. P. 012159. http://dx.doi.org/10.1088/1742-6596/946/1/012159
  34. 34. Polyakov D.N., Shumova V.V., Vasilyak L.M. // J. Appl. Phys. 2020. V. 128. P. 053301. https://doi.org/10.1063/5.0014944
  35. 35. Поляков Д.Н., Шумова В.В., Василяк Л.М. // Хим. физика. 2024. Т. 43. № 8. С. 109. https://doi.org/10.31857/S0207401X24080127
  36. 36. Polyakov D.N., Shumova V.V., Vasilyak L.M. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 1128. https://doi.org/10.1134/S1990793124700635
  37. 37. Polyakov D.N., Shumova V.V., Vasilyak L.M., Fortov V.E. // Phys. Scr. 2010. V. 82. № 7. P. 055501. https://iopscience.iop.org/article/10.1088/00318949/82/05/055501
  38. 38. Поляков Д.Н., Василяк Л.М., Шумова В.В. // Электронная обработка материалов. 2013. Т. 49. № 2. С. 25.
  39. 39. Polyakov D.N., Vasilyak L.M.,Shumova V.V. // Surf. Eng. Appl. Electrochem. 2013. V. 49. № 2. P. 114. https://doi.org/10.3103/S1068375513020105
  40. 40. Голубков Г.В., Берлин А.А., Дьяков Ю.А. и др. // Хим. физика. 2023. Т. 42. № 10. С. 64. https://doi.org/10.31857/S0207401X23100072
  41. 41. Golubkov G.V., Berlin A.A, Dyakov Y.A. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 1216. https://doi.org/10.1134/S1990793123050214
  42. 42. Голубков Г.В., Манжелий М.И., Берлин А.А. и др. // Хим. физика. 2018. Т. 37. № 7. С. 33.
  43. 43. Golubkov G.V., Manzhelii M.I., Berlin A.A. et al. // Russ. J. Phys. Chem. B. 2018. V. 12. P. 725. https://doi.org/10.1134/S1990793118040061
  44. 44. Polyakov D.N., Shumova V.V., Vasilyak L.M.,Fortov V.E. // Phys. Lett. A. 2011. V. 375. P. 3300. https://doi.org/10.1016/j.physleta.2011.07.005
  45. 45. Polyakov D.N., Shumova V.V., Vasilyak L.M. // Plasma Sources Sci. Technol. 2021. V. 30. № 7. P. 07LT01. https://doi.org/10.1088/1361-6595/ac0a46
  46. 46. Шумова В.В., Поляков Д.Н., Василяк Л.М. // Хим. физика. 2025. Т. 44. № 4. С. 106. https://doi.org/10.31857/S0207401X25040127
  47. 47. Shumova V.V., Polyakov D.N., Vasilyak L.M. // Adv. Chem. Phys. 2025. V. 44. № 4. P. 109.
  48. 48. Шумова В.В., Поляков Д.Н., Василяк Л.М. // Хим. физика. 2021. Т. 40. № 8. С. 70. https://doi.org/10.31857/S0207401X21080112
  49. 49. Shumova V.V., Polyakov D.N., Vasilyak L.M. // Russ. J. Phys. Chem. B. 2021. V. 15. №4. P. 691. https://doi.org/10.1134/S1990793121040242
  50. 50. https://bolsig.laplace.univ-tlse.fr/
  51. 51. https://nl.lxcat.net
  52. 52. Атмосфера стандартная. Параметры ГОСТ 4401–81 https://nauca.ru/ref/ГОСТ-4401-81.pdf
  53. 53. Standard atmosphere. Parameters. (GOST 4401—81) [in Russian]. https://nauca.ru/ref/ГОСТ-4401-81.pdf
  54. 54. Поляков Д.Н., Василяк Л.М., Шумова В.В. // Электронная обработка материалов. 2015. Т. 51. № 2. С. 41.
  55. 55. Polyakov D.N., Vasilyak L.M., Shumova V.V. // Surf. Eng. Appl. Electrochem. 2015. V. 51. № 2. P. 143. https://doi.org/10.3103/S106837551502012X
  56. 56. Василяк Л.М., Ветчинин С.П., Нефедов А.П., Поляков Д.Н. // Теплофизика высоких температур. 2000, Т. 38, № 5, 701.
  57. 57. Vasilyak L.M., Vetchinin S.P., Nefedov, A.P., Polyakov D.N. // High Temp. 2000. V. 38. № 5. P. 675. https://doi.org/10.1007/BF02755917
  58. 58. Балабанов В.В. и др. // ЖЭТФ. 2001. Т. 119. Вып. 1. С. 99.
  59. 59. Balabanov V.V. et al. // J. Exp. Theor. Phys. 2001. V. 92. № 1. P. 86. https://doi.org/10.1134/1.1348464
  60. 60. Василяк Л.М., Ветчинин С.П., Поляков Д.Н., Фортов В.Е. // ЖЭТФ. 2005. Т. 127. № 5. 1166.
  61. 61. Vasilyak L.M., Vetchinin S.P., Polyakov D.N., Fortov V.E. // J. Exp. Theor. Phys. 2005. V. 100. № 5. P. 1029. https://doi.org/10.1134/1.1947327
  62. 62. Raizer Y.P., Milikh G.M., Shneider M.N. // J. Atmosph. Sol.-Terr. Phys. 2007. V. 69. P. 925. https://doi.org/10.1016/j.jastp.2007.02.007
  63. 63. Nijdam S.,Teunissen J., Ebert U. // Plasma Sources Sci. Technol. 2020. V. 29. P. 103001. https://iopscience.iop.org/article/10.1088/1361-6595/abaa05
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library