RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

THE FORMATION OF AEROSOL HAZE IN THE ATMOSPHERE

PII
S3034612625100083-1
DOI
10.7868/S3034612625100083
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 10
Pages
81-92
Abstract
Atmospheric aerosol containing sulfates affects air quality on a regional scale and the climate on a global scale. For example, in the northern part of the North China Plain, an agglomeration with a population of about half a billion people is systematically exposed to catastrophically rapid pollution by dense haze. In this work, for the first time, evidence is interpreted in favor of the existence of critical atmospheric conditions that enable the extremely rapid formation of sulfates and nitrates in aerosol particles and, in combination with suitable meteorological conditions (temperature, relative humidity, atmospheric stagnation, etc.), lead to the occurrence of aerosol haze. It is shown that sustained and rapid sulfate accumulation in the degenerate-branched regime of a catalytic process involving transition metal ions is possible – at a given air humidity and in an atmosphere polluted with sulfur and nitrogen oxides – only if the ammonia concentration exceeds a certain threshold. At the same time, the rate of nitrate formation also increases, driven by the coupling of sulfate and nitrate formation processes. As a result, the absorption of moisture and ammonia from the air intensifies, ensuring a self-sustaining and rapid increase in the mass concentration of aerosol haze particles in the atmosphere.
Keywords
аэрозольная дымка критические условия влажность аммиак сульфаты нитраты ионы переходных металлов катализ
Date of publication
20.05.2025
Year of publication
2025
Number of purchasers
0
Views
45

References

  1. 1. Andreae M.O., Jones C.D., Cox P.M. // Nature. 2005. V. 435. № 7046. P. 1187. https://doi.org/10.1038/nature03671
  2. 2. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. Hoboken: John Wiley & Sons, 2016.
  3. 3. Еганов А.А., Кардонский Д.А., Сулименков И.В. и др. // Хим. физика. 2023. Т. 42. № 4. С. 81. https://doi.org/10.31857/S0207401X23040064
  4. 4. Eganov A.A., Kardonsky D.A., Sulimenkov I.V. et al. // Russ. J. Phys. Chem. B. 2019. V. 17. № 2. P. 503. https://doi.org/10.1134/S1990793123020240
  5. 5. Ларин И.К. // Хим. физика. 2023. Т. 42. № 1. С. 84. https://doi.org/10.31857/S0207401X23010077
  6. 6. Larin I.K. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 244. https://doi.org/10.1134/S1990793123010074
  7. 7. Зеленов В.В., Апарина Е.В. // Хим. физика. 2024. Т. 43. № 6. C. 53. https://doi.org/10.31857/S0207401X24060069
  8. 8. Zelenov V.V., Aparina E.V. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 821. https://doi.org/10.1134/S1990793124700246
  9. 9. Ларин И.К., Прончев Г.Б., Ермаков А.Н. // Хим. физика. 2024. Т. 43. № 6. C. 64. https://doi.org/10.31857/S0207401X24060074
  10. 10. Larin I.K., Pronchev G.B., Yermakov A.N. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 675. https://doi.org/10.1134/S1990793124700258
  11. 11. Ларин И.К., Белякова Т.И., Прончев Г.Б., Трофимова Е.М. // Хим. физика. 2025. Т. 44. № 5. C. 40.
  12. 12. Larin I.K., Belyakova T.I., Pronchev G.B., Trofimova E.M. // Adv. Chem. Phys. 2025. V. 44. № 5. P. 40. https://doi.org/10.31857/S0207401X25050051
  13. 13. Ларин И.К., Прончев Г.Б., Трофимова Е .М. // Хим. физика. 2025. Т. 44. № 5. С. 49.
  14. 14. Larin I.K., Pronchev G.B., Trofimova E.M. // Adv. Chem. Phys. 2025. V. 44. № 5. P. 49. https://doi.org/10.31857/S0207401X25050066
  15. 15. Прончев Г.Б., Ермаков А.Н. // Оптика атмосферы и океана. 2025. Т. 38. № 3. C. 178. https://doi.org/10.15372/AOO20250303
  16. 16. Pronchev G.B., Yermakov A.N. // Atmos. Ocean. Opt., 2025. V. 38. № 4. P. 401. https://doi.org/10.1134/S102485602570023X
  17. 17. Ларин И.К. // Хим. физика. 2025. Т. 44. № 6. C. 109. https://doi.org/10.31857/S0207401X25060097
  18. 18. Larin I.K. // Adv. Chem. Phys. 2025. V. 44. № 6. P. 109. https://doi.org/10.31857/S0207401X25060097
  19. 19. Pronchev G.B., Yermakov A.N. // Russ. J. Phys. Chem. B. 2025. V. 19. № 3. P. 770. https://doi.org/10.1134/S1990793125700460
  20. 20. Wang Y., Zhang Q., Jiang J. et al. // J. Geophys. Res. Atmos. 2014. V. 119. № 17. P. 10425. https://doi.org/10.1002/2013JD021426
  21. 21. Liu T., Clegg S.L., Abbatt J.P.D. // Proc. Natl. Acad. Sci. 2020. V. 117. № 3. P. 1354. https://doi.org/10.1073/pnas.1916401117
  22. 22. Liu P., Ye C., Xue C. et al. // Atmos. Chem. Phys. 2020. V. 20. № 7. P. 4153. https://doi.org/10.5194/acp-20-4153-2020
  23. 23. Виноградова А.А., Губанова Д.П., Иорданский М.А., Скороход А.И. // Оптика атмосферы и океана. 2022. Т. 35. № 6. C. 436. https://doi.org/10.15372/AOO20220602
  24. 24. Vinogradova A.A., Gubanova D.P., Iordanskii M.A., Skorokhod A.I. // Atmospheric and Oceanic Optics. 2022. V. 35. № 6. P. 758. https://doi.org/10.1134/S1024856022060276
  25. 25. Яушева Е.П., Гладких В.А., Камардин А.П., Шмаргунов В.П. // Оптика атмосферы и океана. 2023. Т. 36. № 9. C. 711. https://doi.org/10.15372/AOO20230902
  26. 26. Yausheva E.P., Gladkikh V.A., Kamardin A.P., Shmargunov V.P. // Atmospheric and Oceanic Optics. 2023. V. 36 (S1). P. S65. https://doi.org/10.1134/S1024856024010147
  27. 27. Sirois A., Barrie L.A. // J. Geophys. Res. Atmos. 1999. V. 104. № 9. P. 11599. https://doi.org/10.1029/1999JD900077
  28. 28. Liu M., Song Y., Zhou T. et al. // Geophys. Res. Lett. 2017. V. 44. № 10. P. 5213. https://doi.org/10.1002/2017GL073210
  29. 29. Zheng B., Zhang Q., Zhang Y. et al. // Atmos. Chem. Phys. 2015. V. 15. № 4. P. 2031. https://doi.org/10.5194/acp-15-2031-2015
  30. 30. Brimblecombe P. The Big Smoke: A History of air pollution in London since medieval time. New York: Routledge, 2011.
  31. 31. Grieken R.W. Optimization and environmental application of TW-EPMA for single particle analysis. Antwerpen: Antwerpen University, 2005.
  32. 32. Wang G., Zhang R., Gomez M.E. et al. // Proc. Natl. Acad. Sci. 2016. V. 113. № 48. P. 13630. https://doi.org/10.1073/pnas.1616540113
  33. 33. Fountoukis C., Nenes A. // Atmos. Chem. Phys. 2007. V. 7. № 17. P. 4639. https://doi.org/10.5194/acp-7-4639-2007
  34. 34. Wexler A.S., Clegg S.L. // J. Geophys. Res. Atmos. 2002. V. 107. № D14. P. 3173. https://doi.org/10.1029/2001JD000451
  35. 35. Ермаков А.Н., Алоян А.Е., Арутюнян В.О. // Метеорология и гидрология. 2021. № 11. C. 56. https://doi.org/10.52002/0130-2906-2021-11-56-63
  36. 36. Yermakov A.N., Aloyan A.E., Arutyunyan V.O. // Russ. Meteorol. Hydrol. 2021. V. 46. № 11. P. 762. https://doi.org/10.3103/S1068373921110054
  37. 37. Mozurkewich M. // Atmos. Environ. Part A. Gen. Top. 1993. V. 27. № 2. P. 261. https://doi.org/10.1016/0960-1686 (93)90356-4
  38. 38. Jacobson M.Z., Tabazadeh A., Turco R.P. // J. Geophys. Res. Atmos. 1996. V. 101. № D4. P. 9079. https://doi.org/10.1029/96JD00348
  39. 39. Swietlicki E., Hansson H.C., Hameri K. et al. // Tellus, B: Chem. Phys. Meteorol. 2008. V. 60. № 3. P. 432. https://doi.org/10.1111/j.1600-0889.2008.00350.x
  40. 40. Petters M.D., Kreidenweis S.M. // Atmos. Chem. Phys. 2007. V. 7. № 8. P. 1961. https://doi.org/10.5194/acp-7-1961-2007
  41. 41. Berresheim H., Jaeschke W. // J. Atmos. Chem. 1986. V. 4. № 3. P. 311. https://doi.org/10.1007/BF00053807
  42. 42. Прончев Г.Б., Ермаков А.Н. // Хим. физика. 2024. Т. 43. № 10. С. 89. https://doi.org/10.31857/S0207401X24100089
  43. 43. Pronchev G.B., Yermakov A.N. // Russ. J. Phys. Chem. B. 2024. V. 18. № 5. P. 1422. https://doi.org/10.1134/S1990793124701148
  44. 44. Ibusuki T., Takeuchi K. // Atmos. Environ. 1987. V. 21. № 7. P. 1555. https://doi.org/10.1016/0004-6981 (87)90317-9
  45. 45. Feichter J., Kjellstrom E., Rodhe H. et al. // Atmos. Environ. 1996. V. 30. № 10–11. P. 1693. https://doi.org/10.1016/1352-2310 (95)00394-0
  46. 46. Alexander B., Park R.J., Jacob D.J., Gong S. // J. Geophys. Res. Atmos. 2009. V. 114. № D2. P. 1. https://doi.org/10.1029/2008JD010486
  47. 47. He P., Alexander B., Geng L. et al. // Atmos. Chem. Phys. 2018. V. 18. № 8. P. 5515. https://doi.org/10.5194/acp-18-5515-2018
  48. 48. McCabe J.R., Savarino J., Alexander B., Gong S., Thiemens M.H. // Geophys. Res. Lett. 2006. V. 33. № 5. P. 10. https://doi.org/10.1029/2005GL025164
  49. 49. Martin L.R., Hill M.W. // Atmos. Environ. 1987. V. 21. № 10. P. 2267. https://doi.org/10.1016/0004-6981 (87)90361-1
  50. 50. Ермаков А.Н. // Кинетика и катализ. 2022. Т. 63. № 2. C. 178. https://doi.org/10.31857/S0453881122020022
  51. 51. Yermakov A.N. // Kinet. Catal. 2022. V. 63. № 2. P. 157. https://doi.org/10.1134/S0023158422020021
  52. 52. Баранова Р.Б., Бугаенко Л.Т., Иванина И.Н., Костенко Н.Н., Стародубцев Г.А. // Химия высоких энергий. 1982. Т. 16. № 3. C. 234.
  53. 53. Baranova R.B., Bugaenko L.T., Ivanina I.N., Kostenko N.N., Starodubtsev G.A. // Khim. Vysok. Energ. 1982. V. 16. № 3. P. 234.
  54. 54. Ермаков А.Н. // Кинетика и катализ. 2023. Т. 64. № 1. C. 86. https://doi.org/10.31857/S045388112301001X
  55. 55. Yermakov A.N. // Kinet. Catal. 2023. V. 64. № 1. P. 74. https://doi.org/10.1134/S0023158423010019
  56. 56. Brandt C., van Eldik R. // Chem. Rev. 1995. V. 95. № 1. P. 119. https://doi.org/10.1021/cr00033a006
  57. 57. Herrmann H., Ervens B., Jacobi H.W. et al. // J. Atmos. Chem. 2000. V. 36. № 3. P. 231. https://doi.org/10.1023/A:1006318622743
  58. 58. Berglund J., Fronaeus S., Elding L.I. // Inorg. Chem. 1993. V. 32. № 21. P. 4527. https://doi.org/10.1021/ic00073a011
  59. 59. Wang H. The chemistry of nitrate radical (NO3) and dinitrogen pentoxide (N2O5) in Beijing. Singapore: Springer Nature Singapore Pte Ltd, 2021. https://doi.org/10.1007/978-981-15-8795-5
  60. 60. Schwartz S.E. // SO2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations / Ed. Calvert J.G. Boston: Butterworth, 1984. P. 173.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library