- PII
- S3034612625100083-1
- DOI
- 10.7868/S3034612625100083
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 44 / Issue number 10
- Pages
- 81-92
- Abstract
- Atmospheric aerosol containing sulfates affects air quality on a regional scale and the climate on a global scale. For example, in the northern part of the North China Plain, an agglomeration with a population of about half a billion people is systematically exposed to catastrophically rapid pollution by dense haze. In this work, for the first time, evidence is interpreted in favor of the existence of critical atmospheric conditions that enable the extremely rapid formation of sulfates and nitrates in aerosol particles and, in combination with suitable meteorological conditions (temperature, relative humidity, atmospheric stagnation, etc.), lead to the occurrence of aerosol haze. It is shown that sustained and rapid sulfate accumulation in the degenerate-branched regime of a catalytic process involving transition metal ions is possible – at a given air humidity and in an atmosphere polluted with sulfur and nitrogen oxides – only if the ammonia concentration exceeds a certain threshold. At the same time, the rate of nitrate formation also increases, driven by the coupling of sulfate and nitrate formation processes. As a result, the absorption of moisture and ammonia from the air intensifies, ensuring a self-sustaining and rapid increase in the mass concentration of aerosol haze particles in the atmosphere.
- Keywords
- аэрозольная дымка критические условия влажность аммиак сульфаты нитраты ионы переходных металлов катализ
- Date of publication
- 20.05.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 45
References
- 1. Andreae M.O., Jones C.D., Cox P.M. // Nature. 2005. V. 435. № 7046. P. 1187. https://doi.org/10.1038/nature03671
- 2. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. Hoboken: John Wiley & Sons, 2016.
- 3. Еганов А.А., Кардонский Д.А., Сулименков И.В. и др. // Хим. физика. 2023. Т. 42. № 4. С. 81. https://doi.org/10.31857/S0207401X23040064
- 4. Eganov A.A., Kardonsky D.A., Sulimenkov I.V. et al. // Russ. J. Phys. Chem. B. 2019. V. 17. № 2. P. 503. https://doi.org/10.1134/S1990793123020240
- 5. Ларин И.К. // Хим. физика. 2023. Т. 42. № 1. С. 84. https://doi.org/10.31857/S0207401X23010077
- 6. Larin I.K. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 244. https://doi.org/10.1134/S1990793123010074
- 7. Зеленов В.В., Апарина Е.В. // Хим. физика. 2024. Т. 43. № 6. C. 53. https://doi.org/10.31857/S0207401X24060069
- 8. Zelenov V.V., Aparina E.V. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 821. https://doi.org/10.1134/S1990793124700246
- 9. Ларин И.К., Прончев Г.Б., Ермаков А.Н. // Хим. физика. 2024. Т. 43. № 6. C. 64. https://doi.org/10.31857/S0207401X24060074
- 10. Larin I.K., Pronchev G.B., Yermakov A.N. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 675. https://doi.org/10.1134/S1990793124700258
- 11. Ларин И.К., Белякова Т.И., Прончев Г.Б., Трофимова Е.М. // Хим. физика. 2025. Т. 44. № 5. C. 40.
- 12. Larin I.K., Belyakova T.I., Pronchev G.B., Trofimova E.M. // Adv. Chem. Phys. 2025. V. 44. № 5. P. 40. https://doi.org/10.31857/S0207401X25050051
- 13. Ларин И.К., Прончев Г.Б., Трофимова Е .М. // Хим. физика. 2025. Т. 44. № 5. С. 49.
- 14. Larin I.K., Pronchev G.B., Trofimova E.M. // Adv. Chem. Phys. 2025. V. 44. № 5. P. 49. https://doi.org/10.31857/S0207401X25050066
- 15. Прончев Г.Б., Ермаков А.Н. // Оптика атмосферы и океана. 2025. Т. 38. № 3. C. 178. https://doi.org/10.15372/AOO20250303
- 16. Pronchev G.B., Yermakov A.N. // Atmos. Ocean. Opt., 2025. V. 38. № 4. P. 401. https://doi.org/10.1134/S102485602570023X
- 17. Ларин И.К. // Хим. физика. 2025. Т. 44. № 6. C. 109. https://doi.org/10.31857/S0207401X25060097
- 18. Larin I.K. // Adv. Chem. Phys. 2025. V. 44. № 6. P. 109. https://doi.org/10.31857/S0207401X25060097
- 19. Pronchev G.B., Yermakov A.N. // Russ. J. Phys. Chem. B. 2025. V. 19. № 3. P. 770. https://doi.org/10.1134/S1990793125700460
- 20. Wang Y., Zhang Q., Jiang J. et al. // J. Geophys. Res. Atmos. 2014. V. 119. № 17. P. 10425. https://doi.org/10.1002/2013JD021426
- 21. Liu T., Clegg S.L., Abbatt J.P.D. // Proc. Natl. Acad. Sci. 2020. V. 117. № 3. P. 1354. https://doi.org/10.1073/pnas.1916401117
- 22. Liu P., Ye C., Xue C. et al. // Atmos. Chem. Phys. 2020. V. 20. № 7. P. 4153. https://doi.org/10.5194/acp-20-4153-2020
- 23. Виноградова А.А., Губанова Д.П., Иорданский М.А., Скороход А.И. // Оптика атмосферы и океана. 2022. Т. 35. № 6. C. 436. https://doi.org/10.15372/AOO20220602
- 24. Vinogradova A.A., Gubanova D.P., Iordanskii M.A., Skorokhod A.I. // Atmospheric and Oceanic Optics. 2022. V. 35. № 6. P. 758. https://doi.org/10.1134/S1024856022060276
- 25. Яушева Е.П., Гладких В.А., Камардин А.П., Шмаргунов В.П. // Оптика атмосферы и океана. 2023. Т. 36. № 9. C. 711. https://doi.org/10.15372/AOO20230902
- 26. Yausheva E.P., Gladkikh V.A., Kamardin A.P., Shmargunov V.P. // Atmospheric and Oceanic Optics. 2023. V. 36 (S1). P. S65. https://doi.org/10.1134/S1024856024010147
- 27. Sirois A., Barrie L.A. // J. Geophys. Res. Atmos. 1999. V. 104. № 9. P. 11599. https://doi.org/10.1029/1999JD900077
- 28. Liu M., Song Y., Zhou T. et al. // Geophys. Res. Lett. 2017. V. 44. № 10. P. 5213. https://doi.org/10.1002/2017GL073210
- 29. Zheng B., Zhang Q., Zhang Y. et al. // Atmos. Chem. Phys. 2015. V. 15. № 4. P. 2031. https://doi.org/10.5194/acp-15-2031-2015
- 30. Brimblecombe P. The Big Smoke: A History of air pollution in London since medieval time. New York: Routledge, 2011.
- 31. Grieken R.W. Optimization and environmental application of TW-EPMA for single particle analysis. Antwerpen: Antwerpen University, 2005.
- 32. Wang G., Zhang R., Gomez M.E. et al. // Proc. Natl. Acad. Sci. 2016. V. 113. № 48. P. 13630. https://doi.org/10.1073/pnas.1616540113
- 33. Fountoukis C., Nenes A. // Atmos. Chem. Phys. 2007. V. 7. № 17. P. 4639. https://doi.org/10.5194/acp-7-4639-2007
- 34. Wexler A.S., Clegg S.L. // J. Geophys. Res. Atmos. 2002. V. 107. № D14. P. 3173. https://doi.org/10.1029/2001JD000451
- 35. Ермаков А.Н., Алоян А.Е., Арутюнян В.О. // Метеорология и гидрология. 2021. № 11. C. 56. https://doi.org/10.52002/0130-2906-2021-11-56-63
- 36. Yermakov A.N., Aloyan A.E., Arutyunyan V.O. // Russ. Meteorol. Hydrol. 2021. V. 46. № 11. P. 762. https://doi.org/10.3103/S1068373921110054
- 37. Mozurkewich M. // Atmos. Environ. Part A. Gen. Top. 1993. V. 27. № 2. P. 261. https://doi.org/10.1016/0960-1686 (93)90356-4
- 38. Jacobson M.Z., Tabazadeh A., Turco R.P. // J. Geophys. Res. Atmos. 1996. V. 101. № D4. P. 9079. https://doi.org/10.1029/96JD00348
- 39. Swietlicki E., Hansson H.C., Hameri K. et al. // Tellus, B: Chem. Phys. Meteorol. 2008. V. 60. № 3. P. 432. https://doi.org/10.1111/j.1600-0889.2008.00350.x
- 40. Petters M.D., Kreidenweis S.M. // Atmos. Chem. Phys. 2007. V. 7. № 8. P. 1961. https://doi.org/10.5194/acp-7-1961-2007
- 41. Berresheim H., Jaeschke W. // J. Atmos. Chem. 1986. V. 4. № 3. P. 311. https://doi.org/10.1007/BF00053807
- 42. Прончев Г.Б., Ермаков А.Н. // Хим. физика. 2024. Т. 43. № 10. С. 89. https://doi.org/10.31857/S0207401X24100089
- 43. Pronchev G.B., Yermakov A.N. // Russ. J. Phys. Chem. B. 2024. V. 18. № 5. P. 1422. https://doi.org/10.1134/S1990793124701148
- 44. Ibusuki T., Takeuchi K. // Atmos. Environ. 1987. V. 21. № 7. P. 1555. https://doi.org/10.1016/0004-6981 (87)90317-9
- 45. Feichter J., Kjellstrom E., Rodhe H. et al. // Atmos. Environ. 1996. V. 30. № 10–11. P. 1693. https://doi.org/10.1016/1352-2310 (95)00394-0
- 46. Alexander B., Park R.J., Jacob D.J., Gong S. // J. Geophys. Res. Atmos. 2009. V. 114. № D2. P. 1. https://doi.org/10.1029/2008JD010486
- 47. He P., Alexander B., Geng L. et al. // Atmos. Chem. Phys. 2018. V. 18. № 8. P. 5515. https://doi.org/10.5194/acp-18-5515-2018
- 48. McCabe J.R., Savarino J., Alexander B., Gong S., Thiemens M.H. // Geophys. Res. Lett. 2006. V. 33. № 5. P. 10. https://doi.org/10.1029/2005GL025164
- 49. Martin L.R., Hill M.W. // Atmos. Environ. 1987. V. 21. № 10. P. 2267. https://doi.org/10.1016/0004-6981 (87)90361-1
- 50. Ермаков А.Н. // Кинетика и катализ. 2022. Т. 63. № 2. C. 178. https://doi.org/10.31857/S0453881122020022
- 51. Yermakov A.N. // Kinet. Catal. 2022. V. 63. № 2. P. 157. https://doi.org/10.1134/S0023158422020021
- 52. Баранова Р.Б., Бугаенко Л.Т., Иванина И.Н., Костенко Н.Н., Стародубцев Г.А. // Химия высоких энергий. 1982. Т. 16. № 3. C. 234.
- 53. Baranova R.B., Bugaenko L.T., Ivanina I.N., Kostenko N.N., Starodubtsev G.A. // Khim. Vysok. Energ. 1982. V. 16. № 3. P. 234.
- 54. Ермаков А.Н. // Кинетика и катализ. 2023. Т. 64. № 1. C. 86. https://doi.org/10.31857/S045388112301001X
- 55. Yermakov A.N. // Kinet. Catal. 2023. V. 64. № 1. P. 74. https://doi.org/10.1134/S0023158423010019
- 56. Brandt C., van Eldik R. // Chem. Rev. 1995. V. 95. № 1. P. 119. https://doi.org/10.1021/cr00033a006
- 57. Herrmann H., Ervens B., Jacobi H.W. et al. // J. Atmos. Chem. 2000. V. 36. № 3. P. 231. https://doi.org/10.1023/A:1006318622743
- 58. Berglund J., Fronaeus S., Elding L.I. // Inorg. Chem. 1993. V. 32. № 21. P. 4527. https://doi.org/10.1021/ic00073a011
- 59. Wang H. The chemistry of nitrate radical (NO3) and dinitrogen pentoxide (N2O5) in Beijing. Singapore: Springer Nature Singapore Pte Ltd, 2021. https://doi.org/10.1007/978-981-15-8795-5
- 60. Schwartz S.E. // SO2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations / Ed. Calvert J.G. Boston: Butterworth, 1984. P. 173.