RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

FREQUENCY DEPENDENCIES OF ELECTRICAL CHARACTERISTICS OF COMPOSITE MATERIALS BASED ON ORGANOSILOXANES AND HIGHLY DISPERSED CARBON FILLERS OF VARIOUS SHAPES

PII
S3034612625110022-1
DOI
10.7868/S3034612625110022
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 11
Pages
9-15
Abstract
Composites based on siloxane with additives of hybrid filler in the form of a mixture of spherical and extended carbon structures frequency characteristics are studied by electrometrical method. The effect of the filler type and concentration on the conductive properties of the composites, as well as the behavior of electrical resistance during mechanical stretching, was determined. The introduction of a hybrid filler into the composite significantly changes the value and depending type of electrical conductivity.
Keywords
органосилоксан композитные материалы частотные зависимости углеродные наполнители нанотрубки высокодисперсные углеродные частицы импеданс
Date of publication
20.05.2025
Year of publication
2025
Number of purchasers
0
Views
37

References

  1. 1. Ameri S.K., Kim M., Kuang I. et al. // Imperceptible electrooculography graphene sensor system for human– robot interface, npj 2D Materials and Applications. 2018. № 2. P. 1. https://doi.org/10.1002/adma.201505124
  2. 2. Takeshita T., Yoshida M., Takei Y. et al. // Sci Rep. 2019. V. 9. P. 5897. https://doi.org/10.1038/s41598-019-42027-x
  3. 3. Семенуха О.В., Воронина С.Ю. // Изв. вузов. Технология текстильной пром-ти. 2023. № 6 (408). С. 241.
  4. 4. Semenukha O. V., Voronina S. Yu. // Technology of the textile industry. 2023. № 6 (408). P. 241. https://doi.org/10.47367/0021-3497_2023_6_241
  5. 5. Folorunso O., Hamam Y., Sadiku R. et al. // Polymers. 2019. V. 8. № 11. P. 1250. https://doi.org/10.3390/polym11081250
  6. 6. Lu C., Liu E., Sun Q., Shao Y. // Polymers. 2024. № 17. P. 2496. https://doi.org/10.3390/polym16172496
  7. 7. Jang S., Oh J.H. // Sci Rep. 2018. V. 8. P. 1.
  8. 8. Симбирцева Г.В., Бабенко С.Д., Кирюхин Д.П., Арбузов А.А. // Хим. физика. 2023. Т. 42. №1. С. 15. https://doi.org/10.31857/S0207401X23010119
  9. 9. Simbirtseva G.V., Babenko S.D., Kiryukhin D.P., Arbuzov A.A. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 107. https://doi.org/10.31857/S0207401X23010119
  10. 10. Роговина С.З., Гасымов М.М., Ломакин С.М. и др. // Хим. физика. 2023. Т. 42. № 11. С. 70. https://doi.org/10.31857/S0207401X23110080
  11. 11. Rogovina S.Z., Gasimov M.M., Lomakin S.M. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1376. https://doi.org/10.31857/S0207401X23110080
  12. 12. Marinho B., Ghislandi M., Tkalya E. et al. // Powder Technol. 2012. V. 221. P. 351. https://doi.org/10.1016/j.powtec.2012.01.024
  13. 13. Симбирцева Г.В., Пивень Н.П., Бабенко С.Д. // Хим. физика. 2020. Т. 39. № 12. С. 60.
  14. 14. Simbirtseva G.V., Piven N.P., Babenko S.D. // Russ. J. Phys. Chem. B. 2020. V. 14. № 6. P. 980.
  15. 15. Onggar T., Kruppke I., Cherif C. // Polymers. 2020. V. 12. № 12. P. 2867. https://doi.org/10.3390/polym12122867
  16. 16. Radzuan N., Sulong A., Sahari J.// Intern. J. Hydrogen Energy. 2017. V. 42. № 14. P. 9262. https://doi.org/10.1016/j.ijhydene.2016.03.045
  17. 17. Taherian R., Kausar A. Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling, and Applications. 2018. 418 p.
  18. 18. Yang W., Gong Y., Li W. // Front. Bioeng. Biotechnol. 2020. V. 8. P. 622923.
  19. 19. Vafaiee M., Ejehi F., Mohammadpour R. // Sci Rep. 2023. № 13. P. 370. https://doi.org/10.1038/s41598-023-27690-5
  20. 20. Ward M.P., Rajdev P., Ellison C., Irazoqui P.P. // Brain Res. 2009. V. 1282. P. 183. https://doi.org/10.1016/j.brainres.2009.05.052
  21. 21. Obidin N., Tasnim F., Dagdeviren C. // Adv. Mater. 2019. V. 32. № 15. P. 1901482. https://doi.org/10.1002/adma.201901482
  22. 22. Patil A.C., Thakor N.V. // Med. Biol. Eng. Comput. 2016. V. 54. P. 23. https://doi.org/10.1007/s11517-015-1430-4
  23. 23. Song E., Li J., Won S.M. et al. // Nat. Mater. 2020. V. 19. P. 590. https://doi.org/10.1038/s41563-020-0679-7
  24. 24. Zhou Y., Burgoyne Morris G.H., Nair M. // Cell Rep. Phys. Sci. 2024. V. 5. № 8. P. 101852. https://doi.org/10.1016/j.xcrp.2024.101852
  25. 25. Li Y., Ai Q., Mao L. et al. // Sci. Rep. 2021. V. 11. P. 21006.
  26. 26. Аванесян В.Т., Пучков М.Ю. // Изв. РГПУ им. А.И. Герцена. 2009. № 95. С. 39.
  27. 27. Avanesyan V.T., Puchkov M.Yu. // Izvestiya RSPU named after A. I. Herzen. 2009. № 95. P. 39 [In Russian].
  28. 28. Лущейкин Г.А. // Методы исследования электрических свойств полимеров М.: Химия. 1998. 157 с.
  29. 29. Luscheikin G.A. Methods for studying the electrical properties of polymers. Moscow: Khimiya, 1998 [In Russian].
  30. 30. Van Krevelen D.V. Properties of Polymers: Correlations with Chemical Structure. Amsterdam: Elsevier, 1972.
  31. 31. Blythe A.R. Electrical properties of Polymers. London B.Y.: Cambridge Univ. Press, 1980.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library