RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

PROTECTIVE COMPOSITE FLUOROPOLYMER-CONTAINING COATINGS ON ST3 STEEL FORMED USING COLD GAS-DYNAMIC SPRAYING TECHNOLOGY

PII
S3034612625110045-1
DOI
10.7868/S3034612625110045
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 11
Pages
26-37
Abstract
The article presents the results of studying the coatings formed using different methods by means of cold gas-dynamic spraying (CS) on the surface of structural steel St3. Various methods for forming protective polymer-containing coatings are proposed. The composition and morphology of the protective layers are studied using the SEM–EDS analysis method. The anticorrosive properties of the coated samples were studied using the electro-chemical impedance spectroscopy and potentiodynamic polarization method during exposure to 3.5 wt.% NaCl solution. It is shown that the inclusion of superdispersed polytetrafluoroethylene (SPTFE) in the coating increases the corrosion resistance of the base copper-zinc layer. The best anticorrosive properties were established for a sample with a basic Cu-Zn CS layer annealed at 500 °C for 1 h, followed by SPTFE treatment and repeated annealing at 350 °C for 1 h. The obtained results indicate that polymer-containing coatings formed by the CS method effectively increase the protective properties of the treated material.
Keywords
холодное газодинамическое напыление защитные покрытия фторполимеры сталь электрохимия
Date of publication
20.05.2025
Year of publication
2025
Number of purchasers
0
Views
31

References

  1. 1. Авдеев Я.Г., Ненашева Т.А., Лучкин А.Ю., Маршаков А.И., Кузнецов Ю.И. // Хим. физика. 2024. Т. 43. № 1. С. 24. https://doi.org/10.31857/S0207401X24010033
  2. 2. Avdeev Y.G., Nenasheva T.A., Luchkin A.Yu., Marshakov A.I., Kuznetsov Yu.I. // Russ. J. Phys. Chem. B. 2024. V. 18. № 1. P. 111.
  3. 3. Adasooriya N.D., Hemmingsen T., Pavlou D. // Corros. Rev. 2020. V. 38. № 1. P. 49. https://doi.org/10.1515/CORRREV-2019-0066
  4. 4. Li P., Du M. // Corros. Commun. 2022. V. 7. P. 23. https://doi.org/10.1016/j.corcom.2022.03.005
  5. 5. Zhang W., Yang, S., Geng W., Hu Q., Zhou L.// Mater. Chem. Phys. 2022. V. 288. P. 126409. https://doi.org/10.1016/j.matchemphys.2022.126409
  6. 6. Tahri W., Hu, X., Shi C., Zhang Z. // Constr. Build. Mater. 2021. V. 293. P. 123484. https://doi.org/10.1016/j.conbuildmat.2021.123484
  7. 7. Zhang Y., Yuan R., Yang J., Xiao D., Luo D. et al. // J. Mater. Res. Technol. 2022. V. 20. P. 4077. https://doi.org/10.1016/j.jmrt.2022.08.138
  8. 8. Lazorenko G., Kasprzhitskii A., Nazdracheva T. // Construct. Build.Mater. 2021. V. 288. P. 123115. https://doi.org/10.1016/J.CONBUILDMAT.2021.123115
  9. 9. Karattu V.K., Peringattu K.T., Jayakumar N., Gopalan N.K. // ACS Omega. 2019. V. 4. № 6. P. 10176. https://doi.org/10.1021/acsomega.9b00632
  10. 10. Liao B., Luo Z., Wan S., Chen L. // J. Ind. Eng. Chem. 2022. V. 117. P. 238. https://doi.org/10.1016/j.jiec.2022.10.010
  11. 11. Wang X., Lei Y., Jiang Z.N., Zhang Q.H., Li Y.Y. et al. // Ind. Crops Prod. (China) 2022. V. 188. P. 115680. https://doi.org/10.1016/j.indcrop.2022.115680
  12. 12. Chowdhury M.F.W., Tapia-Bastidas C.V., Hoschke J., Venezuela J., Atrens A. // Intern. J. Hydrogen Energy. 2025. V. 102. P. 181. https://doi.org/10.1016/j.ijhydene.2025.01.018
  13. 13. Mashtalyar D.V., Nadaraia K.V., Imshinetskiy I.M., Sinebryukhov S.L., Gnedenkov S.V. // J. Magnesium Alloys (China). 2022. V. 10. № 4. P. 1033. https://doi.org/10.1016/j.jma.2021.07.020
  14. 14. Parchovianska I., Parchoviansky M., Kaňkova H., Nowicka A., Galusek D. // Materials (Basel). 2021. V. 14. № 24. P. 7777. https://doi.org/10.3390/ma14247777
  15. 15. Li L., Huang Y., Tang W., Zhang Y., Qian L. // Polymers (Basel). 2022. V. 14. № 18. P. 3722. https://doi.org/10.3390/polym14183722
  16. 16. Makarychev Y.B., Gladkikh N.A., Redkina G.V., Grafov O.Yu., Aliev A.D. et al. // Materials (Basel). 2022. V. 15. № 7. P. 2418. https://doi.org/10.3390/ma15072418
  17. 17. Gnedenkov A.S., Mei D., Lamaka S.V., Sinebryukhov S.L., Mashtalyar D.V., Vyaliy I.E., Zheludkevich M.L., Gnedenkov S.V. // Corros. Sci. 2020. V. 170. P. 108689. https://doi.org/10.1016/j.corsci.2020.108689
  18. 18. Attaei M., Taryba M.G., Shakoor R.A., Kahraman R., Marques A.C. et al. // Ibid. 2022. V. 198. P. 110162. https://doi.org/10.1016/j.corsci.2022.110162
  19. 19. Gnedenkov A.S., Sinebryukhov S.L., Filonina V.S., Plekhova N.G., Gnedenkov S.V. // J. Magnesium Alloys (China). 2022. V. 10. № 12. P. 3589. https://doi.org/10.1016/j.jma.2022.05.002
  20. 20. Ferkous H., Delimi A., Kahlouche A., Boulechfar C., Djellali S. et al. // Polymers (Basel). 2022. V. 14. № 16. P. 3288. https://doi.org/10.3390/polym14163288
  21. 21. Uvida M.C., Almeida A.d.A., Pulcinelli S.H., Santilli C.V., Hammer P. // Ibid. № 17. P. 3474. https://doi.org/10.3390/polym14173474
  22. 22. Rakhadilov B., Pogrebnjak A., Sagdoldina Z., Buitkenov D., Beresnev V. et al. // Materials (Basel). 2022. V. 15. № 21. P. 7696. https://doi.org/10.3390/ma15217696
  23. 23. Dai X., Qian J., Qin J., Yue Y., Zhao Y. et al. // Ibid. № 12. P. 4134. https://doi.org/10.3390/ma15124134
  24. 24. Mohamed A.M.A., Hasan H., Seleman M.M.E., Ahmed E., Saleh S.M. et al. // Ibid. 2021. V. 14. № 21. P. 6358. https://doi.org/10.3390/ma14216358
  25. 25. Tabish M., Zhao J., Wang J., Anjum M.J., Qiang Y. et al. // Prog. Org. Coat. 2022. V. 165. P. 106765. https://doi.org/10.1016/j.porgcoat.2022.106765
  26. 26. Saleh S.M., Alminderej F.M., Mohamed A.M.A. // Materials (Basel). 2022. V. 15. № 23. P. 8674. https://doi.org/10.3390/ma15238674
  27. 27. El-Lateef H.M.A., Gouda M., Khalaf M.M., Al-Shuaibi M.A.A., Mohamed I.M.A., Shalabi K., El-Shishtawy R.M. // Polymers (Basel). 2022. V. 14. № 13. P. 2544. https://doi.org/10.3390/polym14132544
  28. 28. Gouda M., Khalaf M.M., Al-Shuaibi M.A.A., Mohamed I.M.A. et al. // Ibid. № 15. P. 3078. https://doi.org/10.3390/polym14153078
  29. 29. Zanca C., Carbone S., Patella B., Lopresti F., Aiello G. et al. // Ibid. № 18. P. 3915. https://doi.org/10.3390/polym14183915
  30. 30. Sun C., Sun M., Tao T., Qu F., Wang G. et al. // Materials (Basel). 2022. V. 15. № 15. P. 5138. https://doi.org/10.3390/ma15155138
  31. 31. Gouda M., Khalaf M.M., Shalabi K., Al-Omair M.A., El-Lateef H.M. Abd. // Polymers (Basel). 2022. V. 14. № 2. P. 228. https://doi.org/10.3390/polym14020228
  32. 32. Al-Masoud M.A., Khalaf M.M., Heakal F.E.-T., Gouda M., Mohamed I.M.A. et al. // Polymers (Basel). 2022. V. 14. № 21. P. 4734. https://doi.org/10.3390/polym14214734
  33. 33. Li J., Tao Z., Cui J., Shen S., Qiu H. // Ibid. № 19. P. 4067. https://doi.org/10.3390/polym14194067
  34. 34. Hsissou R., Lachhab R., El Magri A., Echihi S., Vanaei H.R. et al. // Ibid. № 15. P. 3100. https://doi.org/10.3390/polym14153100
  35. 35. Hynes N.R.J., Vignesh N.J., Barile C., Velu P.S., Baskaran T. et al. // Ibid. № 9. P. 1700. https://doi.org/10.3390/polym14091700
  36. 36. Gnedenkov A.S., Sinebryukhov S.L., Nomerovskii A.D., Filonina V.S., Ustinov A.Yu., Gnedenkov S.V. // J. Magnesium Alloys (China). 2023. V. 11. № 10. P. 3688. https://doi.org/10.1016/j.jma.2023.07.016
  37. 37. Gnedenkov A.S., Sinebryukhov S.L., Nomerovskii A.D., Marchenko V.S., Ustinov A.Yu., Gnedenkov S.V. // J. Magnesium Alloys (China). 2024. V. 12. № 7. P. 2909. https://doi.org/10.1016/j.jma.2024.07.004
  38. 38. Saarimaa V., Kaleva A., Ismailov A., Laihinen T., Virtanen M. et al. // Arab. J. Chem. 2022. V. 15. № 3. P. 103636. https://doi.org/10.1016/j.arabjc.2021.103636
  39. 39. Gnedenkov A.S., Sinebryukhov S.L., Mashtalyar D.V., Imshinetskiy I.M., Vyaliy I.E., Gnedenkov S.V. // Materials (Basel). 2019. V. 12. № 16. P. 2615. https://doi.org/10.3390/ma12162615
  40. 40. Gnedenkov A.S., Sinebryukhov S.L., Mashtalyar D.V., Gnedenkov S.V. // Solid State Phenom. 2015. V. 245. P. 89. https://doi.org/10.4028/www.scientific.net/SSP.245.89
  41. 41. Sinebryukhov S.L., Gnedenkov A.S., Khrisanfova O.A., Gnedenkov S.V. // Surf. Eng. 2009. V. 25. № 8. P. 565. https://doi.org/10.1179/026708409X363237
  42. 42. Mohedano M., Lopez E., Mingo B., Moon S., Matykina E. et al. // J. Mater. Res. Technol. 2022. V. 21. P. 2061. https://doi.org/10.1016/j.jmrt.2022.10.049
  43. 43. Gnedenkov A.S., Kononenko Y.I., Sinebryukhov S.L., Filonina V.S., Vyaliy I.E., Nomerovskii A.D., Ustinov A.Yu., Gnedenkov S.V. // Materials (Basel). 2023. V. 16. № 6. P. 2215. https://doi.org/10.3390/ma16062215
  44. 44. Гнеденков С.В., Хрисанфова О.А., Синебрюхов С.Л., Пузь А.В., Гнеденков А.С.// Коррозия: материалы, защита. 2007. № 2. С. 20.
  45. 45. Gnedenkov S.V., Khrisanova О.А., Sinebryukhov S.L., Puz А.V., Gnedenkov A.S. // Corrosion: protection, materials. 2007. № 2. P. 20 [in Russian].
  46. 46. Гнеденков С.В., Синебрюхов С.Л., Хрисанфова О.А., Егоркин В.С., Машталяр Д.В., Сидорова М.В., Гнеденков А.С. и др. // Вестн. ДВО РАН. 2010. Т. 153. № 5. С. 35.
  47. 47. Gnedenkov S.V., Sinebryukhov S.L., Khrisanfova О.А., Egorkin V.S., Мashtalyar D.V., Sidorova М.V., Gnedenkov A.S. et al. // Bull. Far Eastern Branch, RAS. 2010. V. 153. № 5. P. 35 [in Russian].
  48. 48. Poza P., Garrido-Maneiro M.A. // Prog. Mater. Sci. 2022. V. 123. P. 100839. https://doi.org/10.1016/j.pmatsci.2021.100839
  49. 49. Assadi H., Gartner F., Stoltenhoff T., Kreye H. // Acta Mater. 2003. V. 51. № 15. P. 4379. https://doi.org/10.1016/S1359-6454 (03)00274-X
  50. 50. Wang N., Liu C., Wang Y., Chen H., Chu X. et al. // Materials (Basel). 2022. V. 15. № 19. P. 7007. https://doi.org/10.3390/ma15197007
  51. 51. Heimann R.B., Kleiman J.I., Litovsky E., Marx S., Ng R. et al. // Surf. Coat. Technol. 2014. V. 252. P. 113. https://doi.org/10.1016/j.surfcoat.2014.04.053
  52. 52. Wu K., Sun W., Tan A.W.-Y., Marinescu I., Liu E. et al. // Ibid. 2021. V. 424. P. 127660. https://doi.org/10.1016/j.surfcoat.2021.127660
  53. 53. Wang Q., Han P., Yin S., Niu W.-J., Zhai L. et al. // Coatings. 2021. V. 11. № 2. P. 206. https://doi.org/10.3390/coatings11020206
  54. 54. Popescu C., Alain S., Courant M., Vardelle A., Denoirjean A. et al. // Eng. Sci. Technol. 2022. V. 35. P. 101194. https://doi.org/10.1016/j.jestch.2022.101194
  55. 55. Zou Y. // Acc. Mater. Res. 2021. V. 2. № 11. P. 1071. https://doi.org/10.1021/accountsmr.1c00138
  56. 56. The Cold Spray Materials Deposition Process: Fundamentals and Applications / Ed. Champagne V.K. Boca Raton: CRC Press, 2007. P. 62. https://doi.org/10.1533/9781845693787.1.62
  57. 57. Witharamage C.S., Alrizqi M.A., Chirstudasjustus J., Darwish A.A., Ansell T. et al. // Corros. Sci. 2022. V. 209. P. 110720. https://doi.org/10.1016/j.corsci.2022.110720
  58. 58. Huang C., List A., Wiehler L., Schulze M., Gartner F. et al. // Addit. Manuf. 2022. V. 59. P. 103116. https://doi.org/10.1016/j.addma.2022.103116
  59. 59. Egorkin V.S., Medvedev I.M., Sinebryukhov S.L., Vyaliy I.E., Gnedenkov A.S., Nadaraia K.V., Izotov N.V., Mashtalyar D.V., Gnedenkov S.V. // Materials (Basel). 2020. V. 13. № 12. P. 2739. https://doi.org/10.3390/ma13122739
  60. 60. Gnedenkov S.V., Khrisanfova O.A., Sinebryukhov S.L., Puz’ A.V., Gnedenkov A.S. // Mater. Manuf. Process. 2008. V. 23. № 8. P. 879. https://doi.org/10.1080/10426910802385117
  61. 61. Агеев М.В., Гилевич А.В., Егоров Н.В., Петров В.Н. // Хим. физика. 2004. Т. 23. № 9. С. 58.
  62. 62. Ageev M.V., Gilevich A.V., Egorov N.V., Petrov V.N. // Khim. Fizika. 2004. V. 23. № 9. P. 58 [in Russian].
  63. 63. Игнатьева Л.Н., Мащенко В.А., Горбенко О.М., Бузник В.М. // Хим. физика. 2023. Т. 42. № 11. С. 23. https://doi.org/10.31857/S0207401X23110031
  64. 64. Ignatieva L.N., Mashchenko V.A., Gorbenko O.M., Buznik V.M. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1330.
  65. 65. Mashtalyar D.V., Gnedenkov S.V., Sinebryukhov S.L., Imshinetskiy I.M., Gnedenkov A.S., Bouznik V.M. // J. Alloys Compd. 2018. V. 767. P. 353. https://doi.org/10.1016/j.jallcom.2018.07.085
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library