RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

DEVELOPMENT OF SELF-HEALING POLYURETHANE MATERIALS WITH ENHANCED MECHANICAL PROPERTIES AND HIGH RECOVERY EFFICIENCY

PII
S3034612625110095-1
DOI
10.7868/S3034612625110095
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 11
Pages
76-88
Abstract
Self-healing polyurethane block copolymers with a test content of the "hard" block of 60 wt.% based on chain extenders obtained by the reversible reaction between furfuryl alcohol and bismaleimides containing fragments with different donor-acceptor properties have been synthesized and studied for the first time. The degree of influence of the obtained chain extenders and the selected mass content of the "hard" block on the structural features of the synthesized polymers have been studied using IR-spectroscopy. Temperature transitions and the cyclic nature of the direct and retro- reactions have been determined using differential scanning calorimetry. The mechanical properties of the materials have been studied using dynamometric analysis of the original and restored samples of polyurethane block copolymers, and a quantitative assessment of the self-healing efficiency of Young's modulus and tensile strength has been carried out. Visual assessment of the self-healing ability of the materials was carried out using scanning electron microscopy. It was demonstrated that the approach to the development of self-healing polyurethane materials proposed by the authors of the article made it possible to obtain materials with both excellent mechanical properties (Young's modulus ~1124–1465 MPa, tensile strength ~33–38 MPa) and the efficiency of their recovery (η ~ 85–90% and η ~ 92–127%), which is significantly higher than similar values for most known self-healing polyurethanes. It was analyzed that the outstanding elastic-strength properties and the efficiency of recovery of the developed polyurethane materials are provided by the formation of a large number of intermolecular spatial physical crosslinks and increased availability of furan and maleimide groups for the process of thermally induced self-healing due to their concentration in one phase.
Keywords
полиуретаны блоксополимеры самовосстановление реакция Дильса–Альдера
Date of publication
20.05.2025
Year of publication
2025
Number of purchasers
0
Views
27

References

  1. 1. Петрова Т.В., Третьяков И.В., Солодилов В.И. // Хим. физика. 2023. Т. 42. № 1. C. 50. https://doi.org/10.31857/S0207401X23010089
  2. 2. Petrova T.V., Tretyakov I.V., Solodilov V.I. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 177. https://doi.org/10.1134/S1990793123010086
  3. 3. Кириллов В.Е., Юрков Г.Ю., Коробов М.С., Воронов А.С., Солодилов В.И. и др. // Хим. физика. 2023. Т. 42. № 11. C. 39. https://doi.org/10.31857/S0207401X23110043
  4. 4. Kirillov V.E., Yurkov G.Yu., Korobov M.S., Voronov A.S., Solodilov V.I. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1346. https://doi.org/10.1134/S1990793123060040
  5. 5. Вяткина М.А., Горбаткина Ю.А., Петрова Т.В., Солодилов В.И. // Хим. физика. 2023. Т. 42. № 11. C. 16. https://doi.org/10.31857/S0207401X23110110
  6. 6. Vyatkina M.A., Gorbatkina Yu.A., Petrova T.V., Solodilov V.I. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1323. https://doi.org/10.1134/S1990793123060118
  7. 7. Воробьев А.О., Кульбакин Д.Е., Чистяков С.Г. и др. // Хим. физика. 2023. Т. 42. № 11. C. 9. https://doi.org/10.31857/S0207401X23110109
  8. 8. Vorobyev A.O., Kulbakin D.E., Chistyakov S.G., et al.// Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1316. https://doi.org/10.1134/S1990793123060106
  9. 9. An Z.W., Xue R., Ye K. et al. // Nanoscale. 2023. V. 15. № 16. P. 6505. https://doi.org/10.1039/D2NR07110J
  10. 10. Zheng B., Liu T., Liu J. et al. // Composites, Part B. 2023.V. 257. P. 110697. https://doi.org/10.1016/j.compositesb.2023.110697
  11. 11. Cheng B.X., Lu C.C., Li Q. et al. // J. Polym. Environ. 2022. V. 30. № 12. P. 5252. https://doi.org/10.1007/s10924-022-02586-z
  12. 12. Chen L., Dai Z., Lou W. et al. // J. Appl. Polym. Sci. 2022. V. 139. № 30. Article 52694. https://doi.org/10.1002/app.52694
  13. 13. Li P.X., Zhang Z.Y., Cui J.Y., et al. // Langmuir. 2024. V. 40. № 23. P. 12250. https://doi.org/10.1021/acs.langmuir.4c01363
  14. 14. Platonova E.O., Ponomareva P.F., Tretyakov I.V. et al. // Polym. Sci. Ser. C. Sel. Top. 2024. V. 66. № 1. P. 160. https://doi.org/10.1134/S1811238224600228
  15. 15. Li Z.F., Xu C.M., Yin S.M., Wen L.R. // Spectrosc. Spect. Anal. (China). 2002. V. 22. P. 774.
  16. 16. Wolinska-Grabczyk A., Kaczmarczyk B., Jankowski A. // Pol. J. Chem. Technol. 2008. V.10. № 4. P. 53. https://doi.org/10.2478/v10026-008-0049-8
  17. 17. Feng L., Yu Z., Bian Y., Lu J., Shi X., Chai C. // Polymer. 2017. V. 124. P.48. https://doi.org/10.1016/j.polymer.2017.07.049
  18. 18. Xiao S., Hossain M.M., Liu P., Wang H., Hu F. et al. // Mater. Des. 2017. V. 132. P. 419. https://doi.org/10.1016/j.matdes.2017.07.016
  19. 19. Functional Polymers / Eds. Abu Jafar M. et al. Cham, Switzerland: Springer Int. Publ., 2018. P. 225. https://doi.org/10.1007/978-3-319-92067-2
  20. 20. Guazzini T., Bronco S., Carignani E. et al. // Eur. Polym. J. 2019. V. 114. P. 298. https://doi.org/10.1016/j.eurpolymj. 2019.02.023
  21. 21. Krol P. // Prog. Mater. Sci. 2007. V. 52. № 6. P. 915. https://doi.org/10.1016/j.pmatsci.2006.11.001
  22. 22. Zakharova D.V., Lok’yaeva Z.A., Pavlov A.A., Polezhaev A.V. // Key Eng. Mater. 2021. V. 899. P. 628. https://doi.org/10.4028/www.scientific.net/kem.899.628
  23. 23. Platonova E.O., Ponomareva P.F., Lokiaeva Z.A. et al. // Polymers. 2022. V. 14. № 24. P. 5394. https://doi.org/10.3390/polym14245394
  24. 24. Yan Q., Zhou M., Fu H. // J. Mater. Chem. C. 2020. V. 8. № 23. P. 7772. https://doi.org/10.1039/C9TC06765E
  25. 25. Zhou X., Wang H., Li S. et al. // Eur. Polym. J. 2021. V. 159. P. 110769. https://doi.org/10.1016/j.eurpolymj.2021.110769
  26. 26. Syed E.A. Master Thesis. Loughborough, UK: Loughborough University, 2021. V. 1. https://doi.org/10.26174/thesis.lboro.15035103
  27. 27. Zhang C. et al. // J. Mol. Model. 2010. V. 16. P. 1391. https://doi.org/10.1007/s00894-010-0645-4
  28. 28. Luo W. et al. // Macromolecules. 1997. V. 30. № 15. P. 4405. https://doi.org/10.1021/ma951386e
  29. 29. Platonova E. et al. // Polymers. 2021. V. 13. № 12. Article 1935. https://doi.org/10.2478/v10026-008-0049-8
  30. 30. Bednarczyk P. et.al. // J. Appl. Polym. Sci. 2023. V. 140. № 32. Article 54266. https://doi.org/10.1002/app.54266
  31. 31. Lokiaeva Z.A., Soboleva J.A., Zakharova D.V., Storozhuk I.P. // E3S Web Conferences. 2023. V. 413. Article 02036. https://doi.org/10.1051/e3sconf/202341302036
  32. 32. Venkatesh D., Jaisankar V. // Mater. Today: Proc. 2019. V. 14. Part 2. P. 482. https://doi.org/10.1016/j.matpr.2019.04.171
  33. 33. Petrova T.V., Tretyakov I.V., Kireynov A.V. et al. // Appl. Sci. 2023. V. 13. Article 6557. https://doi.org/10.3390/app13116557
  34. 34. Behera P., Raut S., Mondal P. et al. // ACS Appl. Polym. Mater. 2021. V. 3. № 2. P. 847. https://doi.org/10.1021/acsapm.0c01179
  35. 35. Jiang H., Yan T., Cheng M. et al. // Mater. Horiz. 2025. V. 12. № 2. P.599. https://doi.org/10.1039/D4MH01129E
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library