RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Numerical simulation of laminar stoichiometric hydrogen–air flame structure

PII
S30346126S0207401X25080068-1
DOI
10.7868/S3034612625080068
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 8
Pages
54-63
Abstract
Numerical simulations of flame structure and laminar burning velocity are performed for a stoichiometric hydrogen–air mixture under standard initial conditions. A comparative analysis is presented of the results obtained using three detailed kinetic mechanisms (DKMs), which differ both in the set of elementary reaction steps and reacting species and in the values of rate constants. It is found that the decrease in H2 concentration has a weakly pronounced two-stage character. In the presence of an additional initiation channel H2+O2=OH+OH, a pronounced second maximum of the intermediate H2O2 concentration appears. In the absence of this channel, a two-stage increase in OH concentration is observed. Based on an analysis of the sensitivity of heat release to reaction rate constants, the complex behavior of the OH and H2O2 profiles is explained. Despite the differences revealed, all three DKMs predict similar values of burning velocity and heat release rate.
Keywords
стехиометрическая водородно-воздушная смесь ламинарное пламя численное моделирование тепловыделение детальный кинетический механизм химическая кинетика
Date of publication
15.08.2025
Year of publication
2025
Number of purchasers
0
Views
43

References

  1. 1. Sanchez A.L., Williams F.A. // Prog. Energy Combust. Sci. 2014. V. 41. P. 1. https://doi.org/10.1016/j.pecs.2013.10.002
  2. 2. Губернов В.В. Автореф. дис. … д-ра ф.-м. наук. М.: Физ. ин-т им. П.Н. Лебедева РАН, 2013.
  3. 3. Шмаков А.Г. Автореф. дис. … д-ра хим. наук. Нск: ИХКГ СО РАН, 2022.
  4. 4. Kudriakov S., Studer E., Bin C. // Intern. J. Hydrogen Energy. 2011. V. 36. № 3. P. 2555. https://doi.org/10.1016/j.ijhydene.2010.03.138
  5. 5. Gai G., Kudriakov S., Rogg B. et al. // Int. J. Hydrogen Energy. 2019. V. 44. № 31. P. 17015. https://doi.org/10.1016/j.ijhydene.2019.04.225
  6. 6. Yakovenko I.S., Ivanov M.F., Kiverin A.D., Melni­ko­va K.S. // Int. J. Hydrogen Energy. 2018. V. 43. P. 1894. https://doi.org/10.1016/j.ijhydene.2017.11.138
  7. 7. Yakovenko I., Kiverin A., Melnikova K. // Fluids. 2021. V. 6. №. 1. P. 21. https://doi.org/10.3390/fluids6010021
  8. 8. Яковенко И.С., Медведков И.С., Киверин А.Д. // Хим. физика. 2022. Т. 41. № 3. С. 85.
  9. 9. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2023. Т. 42. № 8. С. 68.
  10. 10. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2023. Т. 42. № 12. С. 48.
  11. 11. Moroshkina A., Yakupov E., Mislavskii V., et al. // Acta Astronautica. 2024. V. 215. P. 496. https://doi.org/10.1016/j.actaastro.2023.12.032
  12. 12. Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. М.: Наука, 1987.
  13. 13. Hong Z., Davidson D.F., Hanson R.K. // Combust. and Flame. 2011. V. 158. No. 4. P. 633. https://doi.org/10.1016/j.combustflame.2010.10.002
  14. 14. Keromnes A., Metcalfe W. K., Heufer K. A. et al. // Combust. and Flame. 2013. V. 160. P. 995. https://doi.org/10.1016/j.combustflame.2013.01.001
  15. 15. Smith G. P., Tao Y., Wang H. Foundational Fuel Chemistry Model. Ver. 1.0 (FFCM-1), 2016. http://web.stanford.edu/group/haiwanglab/FFCM-1/index.html
  16. 16. Hashemi H., Christensen J.M., Gersen S., Glarborg P. // Proc. Combust. Inst. 2015. V. 3. P. 553. https://doi.org/10.1016/j.proci.2014.05.101
  17. 17. Konnov A.A. // Combust. and Flame. 2019. V. 203. P. 14. https://doi.org/10.1016/j.combustflame.2019.01.032
  18. 18. Zhang Y., Fu J., Xie M., Liu J. // Int. J. Hydrogen Energy. 2021. V. 46. №. 7. P. 5799. https://doi.org/10.1016/j.ijhydene.2020.11.083
  19. 19. Krivosheyev P., Kisel Y., Skilandz A. et al. // Int. J. Hydrogen Energy. 2024. V. 66. P. 81. https://doi.org/10.1016/j.ijhydene.2024.03.363
  20. 20. Nikitin V.F., Mikhalchenko E.V., Stamov L.I. et al. // Acta Astronaut. 2023. V. 213. P. 156. https://doi.org/10.1016/j.actaastro.2023.08.036
  21. 21. Smirnov N.N., Azatyan V.V., Nikitin V.F. et al. // Int. J. Hydrogen Energy. 2023. V. 49. Part B2. P. 1315. https://doi.org/10.1016/j.ijhydene.2023.11.085.
  22. 22. Smirnov N.N., Nikitin V.F., Mikhalchenko E.V. et al. // Int. J. Hydrogen Energy. 2023. V. 49. Part B2. P. 495. https://doi.org/10.1016/j.ijhydene.2023.08.184
  23. 23. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2025. Т. 44. № 4. С. 79.
  24. 24. CHEMKIN-Pro 15112. Reaction Design. San Diego, CK-TUT-10112-1112-UG-1, 2011.
  25. 25. Alekseev V. PhD. Theses. Lund, Sweden: Lunds Univ., 2015.
  26. 26. Lutz A.E., Kee R.J., Miller J.A. Sandia National Laboratories. Livermore, CA, SAND 87-8248, 1998.
  27. 27. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2024. Т. 43. № 7. C. 73.
  28. 28. Kee R.J., Grcar J.F., Smooke M.D., Miller J.A. Sandia National Laboratories. Livermore, CA, SAND85-8240, 1985.
  29. 29. Kwon O.C., Faeth G.M. // Combust. and Flame. 2001. V. 124. P. 590. https://doi.org/10.1016/S0010-2180 (00)00229-7
  30. 30. Бунев В.А., Панфилов В.Н., Бабкин В.С. // Физика горения и взрыва. 2007. Т. 43. № 2. С. 3
  31. 31. Коробейничев О.П., Шварцберг В.М., Ильин С.Б. // Физика горения и взрыва. 1999. Т. 35. № 3. С. 29.
  32. 32. Азатян В.В. // Кинетика и катализ. 2020. Т. 61. № 3. С. 291.
  33. 33. Medvedev S., Agafonov G., Khomik S. // Acta Astro­nautica. 2016. V. 126. P. 150. https://doi.org/10.1016/j.actaastro.2016.04.019
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library