RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Kinetic features of non-thermal plasma conversion of propane-air mixture at high pressure

PII
S30346126S0207401X25080071-1
DOI
10.7868/S3034612625080071
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 8
Pages
64-80
Abstract
The paper presents the results of modeling the conversion of a lean non-combustible propane-air mixture with initiation by a high-frequency corona discharge at a pressure of 5 bar and an initial temperature of 300 K for different equivalence ratios. The discharge creates non-thermal plasma in filament channels. Experiments on the development of such a discharge in air for different conditions were carried out. At pressures of 1 and 2 bar, the discharge has a complex morphology with branching of discharge filaments. At pressures above 3 bar, the glow region has the shape of a straight spoke. The paper presents a kinetic analysis of the conversion. The key component for propane decomposition is the O atom produced in the discharge as a result of O2 dissociation by direct electron impact and excited N2 molecules. In the afterglow, after completion of discharge, the source of the O atom is the reactions of ozone decomposition with N2 and O2. For the formation of NO, it is necessary to take into account the production of N atoms in the excited and ground states. Intermediate oxidized hydrocarbons play a major role in increasing the concentrations of C3H6, C2H4, and CO over time. The decomposition of O3 occurs to a greater extent in a cycle involving NO3. The heating of the discharge-activated zone did not exceed 600 K. The composition of the conversion products obtained as a result of modeling was compared with known experimental literature data.
Keywords
плазмохимическая конверсия пропан кинетический анализ высокочастотный коронный разряд моделирование эксперимент
Date of publication
15.08.2025
Year of publication
2025
Number of purchasers
0
Views
61

References

  1. 1. Bellenoue M., Labuda S., Ruttun B., Sotton J. // Combust. Scien. Technol. 2007. V. 179. P. 477.
  2. 2. Reitz R.D. // Combust. and Flame. 2013. V. 160. P. 1. http://dx.doi.org/10.1016/j.combustflame.2012.11.002
  3. 3. Discepoli G., Cruccolini V., Ricci F. et al. // Appl. Energy. 2020. V. 263. 114617. https://doi.org/10.1016/j.apenergy.2020.114617
  4. 4. Hampe C., Bertsch M., Beck K.W. et al. // SAE. 2013. 2013-32-9144.
  5. 5. Burrows J., Mixell K. // Ignition Systems for Gasoline Engines / Ed. Günther M., Sens M. Switzerland: Inter. Publ. Springer, 2017. P. 268. https://doi.org/10.1007/978-3-319-45504-4_17
  6. 6. Schenk A., Rixecker G., Bohne S. Third Laser Ignition Conference (LIC). US, 2015. Paper W4A.4.
  7. 7. Xu D.A., Lacoste D.A., Laux C.O. // Plasma Chem. Plasma Proces. 2016. V. 36. P. 309. https://doi.org/10.1007/s11090-015-9680-3
  8. 8. Ju Y., Sun W. // Progr. Energy Combust. Scien. 2015. V. 48. P. 21. http://dx.doi.org/10.1016/j.pecs.2014.12.002
  9. 9. Filimonova E., Bocharov A. Bityurin V. // Fuel. 2018. V. 228. P. 309. https://doi.org/10.1016/j.fuel.2018.04.124
  10. 10. Filimonova E.A., Bocharov A.N., Dobrovolskaya A.S., Bityurin V.A. // Plasma Chem. Plasma Proces. 2019. V. 39. № 3. P. 683. https://doi.org/10.1007/s11090-019-09964-x
  11. 11. Tsolas N., Lee J.G., Yetter R.A. // Philosoph. Transact. Royal Soc. A. 2015. V. 373. 20140344. http://dx.doi.org/10.1098/rsta.2014.0344
  12. 12. Tsolas N., Yetter R.A. // Combust. and Flame. 2017. V. 176. P. 534. http://dx.doi.org/10.1016/j.combustflame.2016.10.022
  13. 13. Tsolas N., Yetter R.A., Adamovich I.V. // Ibid. 2017. V. 176. P. 462. http://dx.doi.org/10.1016/j.combustflame.2016.10.023
  14. 14. Filimonova E.A. // J. Phys. D: Appl. Phys. 2015. V. 48. 015201. https://doi.org/10.1088/0022-3727/48/1/015201
  15. 15. Ban Y., Zhong Sh., Zhu J., Zhang F. // Fuel. 2023. V. 339. 127353. https://doi.org/10.1016/j.fuel.2022.127353
  16. 16. Wang L., Yu X., Zheng M. // IEEE Transact. Plasma Scien. 2021. V. 49. № 1. P. 326. https://doi.org/10.1109/TPS.2020.3041635
  17. 17. Yu X., Wang L., Yu S., Wang M., Zheng M. // Plasma Sources Sci. Technol. 2022. V. 31. 055004. https://doi.org/10.1088/1361-6595/ac5f21
  18. 18. Pipa A.V., Koskulics J., Brandenburg R., Hoder T. // Rev. Sci. Instrum. 2012. V. 83. № 11. P. 115112. https://doi.org/10.1063/1.4767637
  19. 19. Пашин М.М., Лысов Н. Ю. // Электричество. 2011. № 1. C. 21.
  20. 20. Kriegseis J., Möller B., Grundmann S., Tropea C. // J. Electrostat. 2011. V. 69. № 4. P. 302. http://dx.doi.org/10.1016/j.elstat.2011.04.007
  21. 21. Лысов Н.Ю. // Электричество. 2016. № 10. C. 28.
  22. 22. Orlov D.M., Corke T.C. // Proc. 44th AIAA Aerospace Sci. Meeting and Exhibit. Reno, Nevada: American Institute of Aeronautics and Astronautics, 2006. P. AIAA 2006-1206. https://doi.org/10.2514/6.2006-1206
  23. 23. Filimonova E.A., Dobrovolskaya A.S., Bocharov A.N., Bityurin V.A., Naidis G.V. // Combust. and Flame. 2020. V. 215. P. 401. https://doi.org/10.1016/j.combustflame.2020.01.029
  24. 24. Филимонова Е.А., Добровольская А.С. // Теплофизика высоких температур. 2023. Т. 61. № 3. С. 340. https://doi.org/10.31857/S0040364423030080
  25. 25. Auzas F., Tardiveau P., Puech P., Makarov M, Agne­ray A. // J. Phys. D: Appl. Phys. 2010. V. 43. 495204. https://doi.org/10.1088/0022-3727/43/49/495204
  26. 26. Hagelaar G.J.M., Pitchford L.C. // Plasma Sources Sci. Technol. 2005. V. 14. P. 722.
  27. 27. Babaeva N.Yu., Naidis G.V. // J. Phys. D: Appl. Phys. 1996. V. 29. P. 2423.
  28. 28. Филимонова Е.А., Добровольская А.С. // Хим. физика. 2023. Т. 42. № 12. C. 39. https://doi.org/10.31857/S0207401X23120051
  29. 29. Filimonova E.A., Kim Y., Hong S.H., Song Y.H. // J. Phys. D: Appl. Phys. 2002. V. 35. P. 2795.
  30. 30. Железняк М.Б., Филимонова Е.А. // Теплофизика высоких температур. 1998. Т. 36. № 4. С. 557.
  31. 31. Herron J.T. // J. Phys. Chem. Ref. Data. 1999. V. 28. № 5. P. 1453.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library