- PII
- 10.31857/S0207401X23040052-1
- DOI
- 10.31857/S0207401X23040052
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 42 / Issue number 4
- Pages
- 20-30
- Abstract
- In order to study the potential energy surfaces (PESs) of systems containing ethylene, hydrogen, and oxygen atoms, quantum chemical calculations are carried out using the hybrid B3LYP method of the density functional theory (DFT) and the composite CBS-QB3 method. An enthalpy diagram reflecting the PES of this reaction system is constructed. It is shown that the addition of a hydrogen atom to ethylene with the formation of an ethyl radical occurs through the formation of a van der Waals complex. The diagram of enthalpies of monomolecular reactions of decomposition and isomerization of the ethoxyl radical is presented in detail, and a conclusion is made about the probability of their occurrence. The global PES minimum of the system describing the sequential addition of hydrogen and oxygen atoms to ethylene is the hydroxyethyl radical. Intermediates CHCH2OH and CH2OCH2 are localized on the PES of the C2H4 + O system and possible pathways for their further transformation are analyzed. The data obtained make it possible to estimate the ranking of individual elementary reactions in the processes of combustion and oxidation of hydrocarbons and the probabilities of various directions for the transformation of chemical species in the studied systems
- Keywords
- этилен окисление поверхность потенциальной энергии методы DFT B3LYP CBS-QB3 программный пакет Gaussian.
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 3
References
- 1. Ushakova A., Zatsepin V., Varfolomeev M., Emelyanov D. // J. Combust. 2017. V. 2017. Article 2526596; https://doi.org/10.1155/2017/2526596
- 2. Манташян А.А. // Хим. физика. 2021. Т. 40. № 4. С. 18; https://doi.org/10.31857/S0207401X21040105
- 3. Pogosyan N.M., Pogosyan M.Dj., Arsentiev S.D., Tavadyan L.A., Strekova L.N., Arutyunov V.S. // Pet. Chem. 2020. V. 60. № 3. P. 316; https://doi.org/10.1134/S0965544120030172
- 4. Grigoryan R.R., Arsentev S.D. // Pet. Chem. 2020. V. 60. № 2. P. 187; https://doi.org/10.1134/S096554412002005X
- 5. Погосян Н.М., Погосян М.Дж., Стрекова Л.Н., Тавадян Л.А., Арутюнов В.С. // Хим. физика. 2015. Т. 34. № 3. С. 35; https://doi.org/10.7868/S0207401X15030103
- 6. Паланкоева А.С., Беляев А.А., Арутюнов В.С. // Хим. физика. 2022. Т. 41. № 6. С. 7.
- 7. Арсентьев С.Д., Тавадян Л.А., Брюков М.Г., Паланкоева А.С., Беляев А.А., Арутюнов В.С. // Хим. физика. 2022. Т. 41. № 11. С. 3.
- 8. Волохов В.М., Зюбина Т.С., Волохов А.В., Амосова Е.С., Варламов Д.А. и др. // Хим. физика. 2021. Т. 40. № 1. С. 3; https://doi.org/10.31857/S0207401X21010131
- 9. Becke A.D. // Phys. Rev. A. 1988. V. 38. P. 3098; https://doi.org/10.1103/PhysRevA.38.3098
- 10. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648; https://doi.org/10.1063/1.464913
- 11. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785; https://doi.org/10.1103/PhysRevB.37.785
- 12. Montgomery Jr.J.A., Frisch M.J., Ochterski J.W., Petersson G.A. // J. Chem. Phys. 1999. V. 110. № 6. P. 2822; https://doi.org/10.1063/1.477924
- 13. Nyden M.R., Petersson G.A. // Ibid. 1981. V. 75. № 4. P. 1843; https://doi.org/10.1063/1.442208
- 14. Petersson G.A., Al-Laham M.A. // Ibid. 1991. V. 94. № 9. P. 6081; https://doi.org/10.1063/1.460447
- 15. Petersson G.A., Tensfeldt T.G., Montgomery J.A. // Ibid. P. 6091; https://doi.org/10.1063/1.460448
- 16. Petersson G.A., Malick D.K., Wilson W.G., Ochterski J.W., Montgomery J.A., Frisch M.J. // Ibid. 1998. V. 109. № 24. P. 10570; https://doi.org/10.1063/1.477794
- 17. Montgomery Jr.J.A., Frisch M.J., Ochterski J.W., Petersson G.A. // Ibid. 2000. V. 112. № 15. P. 6532; https://doi.org/10.1063/1.481224
- 18. Arsentev S.D., Mantashyan A.A. // React. Kinet. Catal. Lett. 1980. V. 13. № 2. P. 125; https://doi.org/10.1007/BF02074183
- 19. Mantashyan A.A., Khachatryan L.A., Niazyan O.M., Arsentev S.D. // Combustion and Flame. 1981. V. 43. P. 221; https://doi.org/10.1016/0010-2180 (81)90022-5
- 20. Манташян А.А., Едигарян Н.Г., Хачатрян Л.А., Арсентьев С.Д. // Химия высоких энергий. 1989. Т. 23. № 1. С. 63.
- 21. Yang K. // J. Amer. Chem. Soc. 1962. V. 84. № 5. P. 719; https://doi.org/10.1021/JA00864A007
- 22. Азатян В.В., Налбандян А.Б., Цуй М.-Ю. // Докл. АН СССР. 1963. Т. 149. № 5. С. 1095.
- 23. Jones W.E., Macknight S.D., Teng L. // Chem. Rev. 1973. V. 73. № 5. P. 407; https://doi.org/10.1021/CR60285A001
- 24. Dupuis M., Wendoloski J.J., Takada T., Lester Jr.W.A. // J. Chem. Phys. 1982. V. 76. № 1. P. 481; https://doi.org/10.1063/1.442748
- 25. Fueno T., Takahara Y., Yamaguchi K. // Chem. Phys. Lett. 1990. V. 167. № 4. P. 291; https://doi.org/10.1016/0009-2614 (90)87170-V
- 26. Smith B.J., Nguyen M.T., Bouma W.J., Radom L. // J. Amer. Chem. Soc. 1991. V. 113. P. 6452; https://doi.org/10.1021/ja00017a015
- 27. Jursic B.S. // THEOCHEM. 1999. V. 492. № 1–3. P. 85; https://doi.org/10.1016/S0166-1280 (99)00123-2
- 28. West A.C., Kretchmer J.S., Sellner B., Park K., Hase W.L. et al. // J. Phys. Chem. A. 2009. V. 113. № 45. P. 12663; https://doi.org/10.1021/jp905070z
- 29. Wortmann-Saleh D., Engels B., Peyerimhoff S.D. // J. Phys. Chem. 1994. V. 98. № 38. P. 9541; https://doi.org/10.1021/J100089A029
- 30. West A.C., Lynch J.D., Sellner B., Lischka H., Hase W.L. et al. // Theor. Chem. Acc. 2012. V. 131. Article 1123; https://doi.org/10.1007/s00214-012-1123-0
- 31. West A.C., Lynch J.D., Sellner B., Lischka H., Hase W.L. et al. // Ibid. Article 1279; https://doi.org/10.1007/s00214-012-1279-7
- 32. Westleyn F., Heron J.T., Cvetanovic R.J., Hampson R.F., Mallard W.G. NIST Standard Reference Database 17, Version 3.0. Gaithersburg, MD, USA National Institute of Standards and Technology, 1991.
- 33. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman, J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A. Jr., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 16, Revision C.01. Wallingford. CT: Gaussian, Inc., 2016.
- 34. Dennington R., Keith T.A., Millam J.M. GaussView, Version 6.1. Shawnee Mission, KS: Semichem Inc., 2019.
- 35. Asatryan R., Davtyan A., Khachatryan L., Dellinger B. // J. Phys. Chem. A. 2005. V. 109. P. 11198; https://doi.org/10.1021/jp053047l
- 36. Asatryan R.S., Davtyan A.H., Khachatryan L.A., Dellinger B. // Organohalogen Compd. 2002. V. 56. P. 277.
- 37. Jursic. B.S. // J. Chem. Soc., Perkin Trans. 2. 1997. V. 2. Issue 3. P. 637; https://doi.org/10.1039/A603269I
- 38. Peng C., Ayala P.Y., Schlegel H.B., Frisch M.J. // J. Comput. Chem. 1996. V. 17. № 1. P. 49; https://doi.org/10.1002/ (SICI)1096-987X(19960115)17: 13.0.CO;2-0
- 39. Peng C., Schlegel H.B. // Isr. J. Chem. 1993. V. 33. P. 449; https://doi.org/10.1002/IJCH.199300051
- 40. Agarwal J., Turney J.M., Schaefer H.F. // J. Phys. Chem. Lett. 2011. V. 2. № 20. P. 2587; https://doi.org/10.1021/jz201124j
- 41. Schlegel H.B., Bhalla K.C., Hase W.L. // J. Phys. Chem. 1982. V. 86. № 25. P. 4883; https://doi.org/10.1021/J100222A010
- 42. Feng Y., Niiranen J.T., Benosura A., Knyazev V.D., Gutman D. et al. // Ibid. 1993. V. 97. P. 871.
- 43. Hase W.L., Schlegel H.B., Balbyshev V., Page M. // Ibid. 1996. V. 100. № 13. P. 5354; https://doi.org/10.1021/jp9528875
- 44. Hase W.L., Schlegel H.B. // Ibid. 1982. V. 100. P. 5354; https://doi.org/10.1021/JP9528875
- 45. Jones W.E., Macknight S.D., Teng L. // Chem. Rev. 1973. V. 73. № 5. P. 407; https://doi.org/10.1021/CR60285A001
- 46. Franklin J.L., Dillard J.G., Rosenstock H.M., Herron J.T., Draxl K., Field F.H. Ionisation potentials, appearance potentials, and heats of formation of gaseous positive ions (NSRDS–NRS26). Washington: US National Bur. eau of Standards, 1969.
- 47. Ruscic B., Pinzon R.E., Morton M.L., Srinivasan N.K., Su M.-C. et al. // J. Phys. Chem. A. 2006. V. 110. № 21. P. 6592; https://doi.org/10.1021/JP056311J
- 48. Berkowitz J., Ellison G.B., Gutman D. // J. Phys. Chem. 1994. V. 98. № 11. P. 2744; https://doi.org/10.1021/j100062a009
- 49. Ruscic B., Boggs J.E., Burcat A. et al. // J. Phys. Chem. Ref. Data. 2005. V. 34. № 2. P. 573; https://doi.org/10.1063/1.1724828
- 50. Golden D.M. // J. Phys. Chem. A. 2012. V. 116. № 17. P. 4259; https://doi.org/10.1021/jp302009t
- 51. http://c3.nuigalway.ie/combustionchemistrycentre/mechanismdownloads/
- 52. Nguyen T.L., Vereecken L., Hou X.J., Nguyen M.T., Peeters J. // J. Phys. Chem. A. 2005. V. 109. № 33. P. 7489; https://doi.org/10.1021/JP052970K
- 53. Knyazev V.D., Arutyunov V.S., Vedeneev V.I. // Intern. J. Chem. Kinet. 1992. V. 24. № 6. P. 545; https://doi.org/10.1002/KIN.550240605
- 54. Li X., Jasper A.W., Zádor J., Miller J.A., Klippenstein S.J. // Proc. Combust. Inst. 2016. V. 36. № 1. P. 219; https://doi.org/10.1016/j.proci.2016.06.053
- 55. Fu B., Han Y.C., Bowman J.M., Leonori F., Balucani N. et al. // J. Chem. Phys. 2012. V. 137. № 22. P. 22A532; https://doi.org/10.1063/1.4746758
- 56. Hu W., Lendvay G., Maiti B., Schatz G.C. // J. Phys. Chem. A. 2008. V. 112. № 10. P. 2093; https://doi.org/10.1021/jp076716z