ОХНМХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Исследование поверхности потенциальной энергии реакционных систем H + O + C2H4

Код статьи
10.31857/S0207401X23040052-1
DOI
10.31857/S0207401X23040052
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 42 / Номер выпуска 4
Страницы
20-30
Аннотация
Поверхность потенциальной энергии (ППЭ) реакционной системы H + O + C2H4, которая играет важную роль в окислительной конверсии углеводородов в целом, была теоретически исследована с использованием различных квантовохимических методов. На ППЭ, соответствующей реакции атома кислорода с этиленом, локализован ряд ранее неизвестных интермедиатов, проанализированы возможные пути их дальнейшего превращения. Получены данные относительно последовательности энергетических уровней образования этоксильного радикала, представлена детальная диаграмма энтальпий мономолекулярных реакций его распада и изомеризации, сделан вывод о вероятности их протекания. Полученные результаты дают возможность оценочно ранжировать отдельные элементарные акты в процессах горения и окисления углеводородов и оценить вероятность различных направлений превращения химических компонентов в исследуемых системах.
Ключевые слова
этилен окисление поверхность потенциальной энергии методы DFT B3LYP CBS-QB3 программный пакет Gaussian.
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
2

Библиография

  1. 1. Ushakova A., Zatsepin V., Varfolomeev M., Emelyanov D. // J. Combust. 2017. V. 2017. Article 2526596; https://doi.org/10.1155/2017/2526596
  2. 2. Манташян А.А. // Хим. физика. 2021. Т. 40. № 4. С. 18; https://doi.org/10.31857/S0207401X21040105
  3. 3. Pogosyan N.M., Pogosyan M.Dj., Arsentiev S.D., Tavadyan L.A., Strekova L.N., Arutyunov V.S. // Pet. Chem. 2020. V. 60. № 3. P. 316; https://doi.org/10.1134/S0965544120030172
  4. 4. Grigoryan R.R., Arsentev S.D. // Pet. Chem. 2020. V. 60. № 2. P. 187; https://doi.org/10.1134/S096554412002005X
  5. 5. Погосян Н.М., Погосян М.Дж., Стрекова Л.Н., Тавадян Л.А., Арутюнов В.С. // Хим. физика. 2015. Т. 34. № 3. С. 35; https://doi.org/10.7868/S0207401X15030103
  6. 6. Паланкоева А.С., Беляев А.А., Арутюнов В.С. // Хим. физика. 2022. Т. 41. № 6. С. 7.
  7. 7. Арсентьев С.Д., Тавадян Л.А., Брюков М.Г., Паланкоева А.С., Беляев А.А., Арутюнов В.С. // Хим. физика. 2022. Т. 41. № 11. С. 3.
  8. 8. Волохов В.М., Зюбина Т.С., Волохов А.В., Амосова Е.С., Варламов Д.А. и др. // Хим. физика. 2021. Т. 40. № 1. С. 3; https://doi.org/10.31857/S0207401X21010131
  9. 9. Becke A.D. // Phys. Rev. A. 1988. V. 38. P. 3098; https://doi.org/10.1103/PhysRevA.38.3098
  10. 10. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648; https://doi.org/10.1063/1.464913
  11. 11. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785; https://doi.org/10.1103/PhysRevB.37.785
  12. 12. Montgomery Jr.J.A., Frisch M.J., Ochterski J.W., Petersson G.A. // J. Chem. Phys. 1999. V. 110. № 6. P. 2822; https://doi.org/10.1063/1.477924
  13. 13. Nyden M.R., Petersson G.A. // Ibid. 1981. V. 75. № 4. P. 1843; https://doi.org/10.1063/1.442208
  14. 14. Petersson G.A., Al-Laham M.A. // Ibid. 1991. V. 94. № 9. P. 6081; https://doi.org/10.1063/1.460447
  15. 15. Petersson G.A., Tensfeldt T.G., Montgomery J.A. // Ibid. P. 6091; https://doi.org/10.1063/1.460448
  16. 16. Petersson G.A., Malick D.K., Wilson W.G., Ochterski J.W., Montgomery J.A., Frisch M.J. // Ibid. 1998. V. 109. № 24. P. 10570; https://doi.org/10.1063/1.477794
  17. 17. Montgomery Jr.J.A., Frisch M.J., Ochterski J.W., Petersson G.A. // Ibid. 2000. V. 112. № 15. P. 6532; https://doi.org/10.1063/1.481224
  18. 18. Arsentev S.D., Mantashyan A.A. // React. Kinet. Catal. Lett. 1980. V. 13. № 2. P. 125; https://doi.org/10.1007/BF02074183
  19. 19. Mantashyan A.A., Khachatryan L.A., Niazyan O.M., Arsentev S.D. // Combustion and Flame. 1981. V. 43. P. 221; https://doi.org/10.1016/0010-2180 (81)90022-5
  20. 20. Манташян А.А., Едигарян Н.Г., Хачатрян Л.А., Арсентьев С.Д. // Химия высоких энергий. 1989. Т. 23. № 1. С. 63.
  21. 21. Yang K. // J. Amer. Chem. Soc. 1962. V. 84. № 5. P. 719; https://doi.org/10.1021/JA00864A007
  22. 22. Азатян В.В., Налбандян А.Б., Цуй М.-Ю. // Докл. АН СССР. 1963. Т. 149. № 5. С. 1095.
  23. 23. Jones W.E., Macknight S.D., Teng L. // Chem. Rev. 1973. V. 73. № 5. P. 407; https://doi.org/10.1021/CR60285A001
  24. 24. Dupuis M., Wendoloski J.J., Takada T., Lester Jr.W.A. // J. Chem. Phys. 1982. V. 76. № 1. P. 481; https://doi.org/10.1063/1.442748
  25. 25. Fueno T., Takahara Y., Yamaguchi K. // Chem. Phys. Lett. 1990. V. 167. № 4. P. 291; https://doi.org/10.1016/0009-2614 (90)87170-V
  26. 26. Smith B.J., Nguyen M.T., Bouma W.J., Radom L. // J. Amer. Chem. Soc. 1991. V. 113. P. 6452; https://doi.org/10.1021/ja00017a015
  27. 27. Jursic B.S. // THEOCHEM. 1999. V. 492. № 1–3. P. 85; https://doi.org/10.1016/S0166-1280 (99)00123-2
  28. 28. West A.C., Kretchmer J.S., Sellner B., Park K., Hase W.L. et al. // J. Phys. Chem. A. 2009. V. 113. № 45. P. 12663; https://doi.org/10.1021/jp905070z
  29. 29. Wortmann-Saleh D., Engels B., Peyerimhoff S.D. // J. Phys. Chem. 1994. V. 98. № 38. P. 9541; https://doi.org/10.1021/J100089A029
  30. 30. West A.C., Lynch J.D., Sellner B., Lischka H., Hase W.L. et al. // Theor. Chem. Acc. 2012. V. 131. Article 1123; https://doi.org/10.1007/s00214-012-1123-0
  31. 31. West A.C., Lynch J.D., Sellner B., Lischka H., Hase W.L. et al. // Ibid. Article 1279; https://doi.org/10.1007/s00214-012-1279-7
  32. 32. Westleyn F., Heron J.T., Cvetanovic R.J., Hampson R.F., Mallard W.G. NIST Standard Reference Database 17, Version 3.0. Gaithersburg, MD, USA National Institute of Standards and Technology, 1991.
  33. 33. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman, J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A. Jr., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 16, Revision C.01. Wallingford. CT: Gaussian, Inc., 2016.
  34. 34. Dennington R., Keith T.A., Millam J.M. GaussView, Version 6.1. Shawnee Mission, KS: Semichem Inc., 2019.
  35. 35. Asatryan R., Davtyan A., Khachatryan L., Dellinger B. // J. Phys. Chem. A. 2005. V. 109. P. 11198; https://doi.org/10.1021/jp053047l
  36. 36. Asatryan R.S., Davtyan A.H., Khachatryan L.A., Dellinger B. // Organohalogen Compd. 2002. V. 56. P. 277.
  37. 37. Jursic. B.S. // J. Chem. Soc., Perkin Trans. 2. 1997. V. 2. Issue 3. P. 637; https://doi.org/10.1039/A603269I
  38. 38. Peng C., Ayala P.Y., Schlegel H.B., Frisch M.J. // J. Comput. Chem. 1996. V. 17. № 1. P. 49; https://doi.org/10.1002/ (SICI)1096-987X(19960115)17: 13.0.CO;2-0
  39. 39. Peng C., Schlegel H.B. // Isr. J. Chem. 1993. V. 33. P. 449; https://doi.org/10.1002/IJCH.199300051
  40. 40. Agarwal J., Turney J.M., Schaefer H.F. // J. Phys. Chem. Lett. 2011. V. 2. № 20. P. 2587; https://doi.org/10.1021/jz201124j
  41. 41. Schlegel H.B., Bhalla K.C., Hase W.L. // J. Phys. Chem. 1982. V. 86. № 25. P. 4883; https://doi.org/10.1021/J100222A010
  42. 42. Feng Y., Niiranen J.T., Benosura A., Knyazev V.D., Gutman D. et al. // Ibid. 1993. V. 97. P. 871.
  43. 43. Hase W.L., Schlegel H.B., Balbyshev V., Page M. // Ibid. 1996. V. 100. № 13. P. 5354; https://doi.org/10.1021/jp9528875
  44. 44. Hase W.L., Schlegel H.B. // Ibid. 1982. V. 100. P. 5354; https://doi.org/10.1021/JP9528875
  45. 45. Jones W.E., Macknight S.D., Teng L. // Chem. Rev. 1973. V. 73. № 5. P. 407; https://doi.org/10.1021/CR60285A001
  46. 46. Franklin J.L., Dillard J.G., Rosenstock H.M., Herron J.T., Draxl K., Field F.H. Ionisation potentials, appearance potentials, and heats of formation of gaseous positive ions (NSRDS–NRS26). Washington: US National Bur. eau of Standards, 1969.
  47. 47. Ruscic B., Pinzon R.E., Morton M.L., Srinivasan N.K., Su M.-C. et al. // J. Phys. Chem. A. 2006. V. 110. № 21. P. 6592; https://doi.org/10.1021/JP056311J
  48. 48. Berkowitz J., Ellison G.B., Gutman D. // J. Phys. Chem. 1994. V. 98. № 11. P. 2744; https://doi.org/10.1021/j100062a009
  49. 49. Ruscic B., Boggs J.E., Burcat A. et al. // J. Phys. Chem. Ref. Data. 2005. V. 34. № 2. P. 573; https://doi.org/10.1063/1.1724828
  50. 50. Golden D.M. // J. Phys. Chem. A. 2012. V. 116. № 17. P. 4259; https://doi.org/10.1021/jp302009t
  51. 51. http://c3.nuigalway.ie/combustionchemistrycentre/mechanismdownloads/
  52. 52. Nguyen T.L., Vereecken L., Hou X.J., Nguyen M.T., Peeters J. // J. Phys. Chem. A. 2005. V. 109. № 33. P. 7489; https://doi.org/10.1021/JP052970K
  53. 53. Knyazev V.D., Arutyunov V.S., Vedeneev V.I. // Intern. J. Chem. Kinet. 1992. V. 24. № 6. P. 545; https://doi.org/10.1002/KIN.550240605
  54. 54. Li X., Jasper A.W., Zádor J., Miller J.A., Klippenstein S.J. // Proc. Combust. Inst. 2016. V. 36. № 1. P. 219; https://doi.org/10.1016/j.proci.2016.06.053
  55. 55. Fu B., Han Y.C., Bowman J.M., Leonori F., Balucani N. et al. // J. Chem. Phys. 2012. V. 137. № 22. P. 22A532; https://doi.org/10.1063/1.4746758
  56. 56. Hu W., Lendvay G., Maiti B., Schatz G.C. // J. Phys. Chem. A. 2008. V. 112. № 10. P. 2093; https://doi.org/10.1021/jp076716z
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека