RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Improvement of morphophysiological parameters of pepper after the seed pre-sowing treatment with zinc nanoparticles

PII
10.31857/S0207401X24040115-1
DOI
10.31857/S0207401X24040115
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 4
Pages
88-96
Abstract
Advanced nanotechnologies allow synthesizing nanoparticles (NPs) with given physical and chemical properties providing an opportunity to study the effects and mechanisms of NPs influence on plants in order to improve their productivity. In this study, Zn NPs introduced in the polymer coating were used as a preparation for pepper seeds pre-sowing treatment. It was found that Zn NPs in concentrations of 10–5% and 10–6% in polymers accelerated plant growth and led to a significant increase in the number of leaves and buds, root mass volume being increased by an average of 10–30% compared to the control. After seed treatment with 10–6% Zn NPs the increase of proline content in plant leaves grew by 58% (p ≤ 0.05), protein content by 20% (p ≤ 0.05); treatment of seeds with Zn HPs at 10–5% concentration led to sugar content enlargement by 36% (p ≤ 0.05), chlorophyll by 52% (p ≤ 0.05) as compared with control.
Keywords
наночастицы цинка морфометрические показатели хлорофилл А и В общий белок пролин сахар
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Siddiqi K.S., Husen A. // Crit Rev Biotechnol. 2022. V. 42. № 7. P. 973. https://doi.org/10.1080/07388551.2021.1975091
  2. 2. Aqeel U., Aftab T., Khan M.M.A. et al. // Chemosphere. 2022. https://doi.org/10.1016/j.chemosphere.2021.132672
  3. 3. Калинина И.Г., Иванов В.Б., Семенов С.А. и др. // Хим. физика. 2021. Т. 40. № 6. С. 71. https://doi.org/10.31857/S0207401X21060054
  4. 4. De la Rosa G., Lopez-Moreno M. L., de Haro D. et al. // Pure Appl. Chem. 2013. V. 85. P. 2161. https://doi.org/10.1351/pac-con-12-09-05
  5. 5. Meena D.S., Jayadeva H.M., Gautam C. et al. // Intern. J. Plant Soil Sci. 2017. V. 16. P. 1. https://doi.org/10.9734/ijpss/2017/33687
  6. 6. Taheri M., Qarache H.A., Qarache A.A. et al. // STEM Fellowship J. 2016. V. 1. P. 17. https://doi.org/10.17975/sfj-2015-011
  7. 7. Sofy A.R., Sofy M,R., Hmed A.A. et al. // Molecules. 2021. V. 26. № 5. P. 1337. https://doi.org/10.3390/molecules26051337
  8. 8. Yasmin H., Mazher J., Azmat A. et.al. // Ecotoxicol Environ Saf. 2021. V. 218. P. 112. https://doi.org/10.1016/j.ecoenv.2021.112262
  9. 9. Faizan M., Bhat J.A., Chen C. et al. // Plant Physiol Biochem. 2021. V. 161. P. 122. https://doi.org/10.1016/j.plaphy.2021.02.002
  10. 10. Базунова М.В., Мустакимов Р.А., Кулиш Е.И. // Хим. физика. 2021. Т. 40. № 9. С. 72. https://doi.org/10.31857/S0207401X21090028
  11. 11. Sheteiwy M.S., Shaghaleh H., Hamoud Y.A. et al. // Environ. Sci. Pollut. Res Intern. 2021. V. 28. № 28: Р. 36942. https://doi.org/10.1007/s11356-021-14542-w
  12. 12. Sohail, Sawati L., Ferrari E. et al. // Front. Plant. Sci. 2022. V. 25. № 13. P. 798751. https://doi.org/10.3389/fpls.2022.798751
  13. 13. Chen Yu, Lu Jinying, Liu Min. et al. // IET Nanobiotechnol. 2020. V. 14. № 5. P. 382. https://doi.org/10.1049/iet-nbt.2019.01832
  14. 14. Yurina T.A., Drobin G.V., Bogoslovskaya O.A. et al. // Sel’skokhozyaistvennaya Biologiya. 2021. V. 56. № 1. P. 135. https://doi.org/10.15389/agrobiology.2021.1.135eng
  15. 15. Leipunsky, I.O., Zhigach, A.N., Kuskov, M.L. et al. // J. Alloys. Compd. 2018. V. 778. P. 271. https://doi.org/10.1016/j.jallcom.2018.11.088
  16. 16. Lowery O.H., Rosenbrough N.J., Farr A.L. et al. // J. Biol. Chem. 1951. V. 27. P. 265.
  17. 17. Arnon D.J. // Plant Physiol. 1949. V. 24. P. 1.
  18. 18. Kirch J.T.O. // Planta.1968. V. 78. P. 200.
  19. 19. Dubo S.M., Giles K.A., Hmilton J.K. et al. // Anal. Chem. 1956. V. 28. P. 350.
  20. 20. Johnson R.P., Balwani T.L., Johnson L.J. et al. // Anim. Sci. 1966.V. 25. P. 617.
  21. 21. Bates L.S. // Plant Soil. 1973. V. 39. P. 205.
  22. 22. Afzal S., Singh N.K. // Environ Pollut. 2022. V. 314. P. 120224. https://doi.org/10.1016/j.envpol.2022.120224
  23. 23. Tarafdar J.C., Raliya R., Mahawar H. et al. // Agric. Res. 2014. V. 3. P. 257. https://doi.org/10.1007/s40003-014-0113
  24. 24. Dhoke S.K., Mahajan P., Kamble R. et al. // Nanotechnol. Dev. 2013. V. 3. P. 111.
  25. 25. Torabian S., Zahedi M., Khoshgoftar A.H. // J. Plant Nutr. 2016. V. 39. P. 172. https://doi.org/10.1080/01904167.2015.1009107
  26. 26. Laware S.L., Raskar S. // Intern. J. Curr. Microbiol. Sci. 2014.V. 3. P. 874.
  27. 27. Жуков А.М., Солодилов В.И., Третьяков И.В. и др. // Хим. физика. 2022. Т. 41. № 9. С. 64. https://doi.org/10.31857/S0207401X22090138
  28. 28. Prasad R., Kumar V., Prasad K.S. // Afr. J. Biotechnol. 2014. V. 13. P. 705. https://doi.org/10.5897/ajbx2013.13554
  29. 29. Pinto F., Celesti M., Acebron K. // Plant Cell Environ. 2020. V. 43. P. 1637. https://doi.org/10.1111/pce.13754
  30. 30. Raliya R., Tarafdar J.C. // Agric. Res. 2013. V. 2. P. 48.
  31. 31. Reddy Pullagurala V.L., Adisa I.O., Rawat S. // Plant Physiol. Biochem. 2018. V. 132. P. 120. https://doi.org/10.1016/j.plaphy.2018.08.037
  32. 32. Wang X., Yang X., Chen S. et al. // Front. Plant Sci. 2016. V. 6. P. 1243. https://doi.org/10.3389/fpls.2015.01243
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library