- PII
- 10.31857/S0207401X24090042-1
- DOI
- 10.31857/S0207401X24090042
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 9
- Pages
- 35-41
- Abstract
- The effect of catecholamines on the oxidation of methyl linoleate in Triton X-100 micelles was studied. It has been established that catecholamines do not inhibit oxidation at a pH 7.4. Inhibition is only possible in the presence of the superoxide dismutase enzyme or at lower pH levels. The reason for this effect is the interaction of anionic forms of phenols and phenoxyl radicals with oxygen with the formation of superoxide anions. High values of inhibition coefficients for catecholamines in the presence of superoxide dismutase are due to the reactions of the resulting ortho-quinones, leading to the regeneration of OH groups.
- Keywords
- катехоламины метиллинолеат антиоксидантная активность супероксидный анион-радикал супероксиддисмутаза
- Date of publication
- 12.09.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 47
References
- 1. Tikhonov I., Roginsky V., Pliss E. // Intern. J. Chem. Kinet. 2008. V. 41. № 2. P. 92; https://doi.org/10.1002/kin.20377
- 2. Tichonov I., Roginsky V., Pliss E. // Eur. J. Lipid Sci. Technol. 2010. V. 112. № 8. P. 887; https://doi.org/10.1002/ejlt.200900282
- 3. Roginsky V. // Arch. Biochem. Biophys. 2003. V. 414. № 2. P. 261; https://doi.org/10.1016/S0003-9861 (03)00143-7
- 4. Roginsky V., Lissi E.A. // Food Chem. 2005. V. 92. № 2. P. 235; https://doi.org/10.1016/j.foodchem.2004.08.004
- 5. Jodko-Piorecka K., Litwinienko G. // Free Radic. Biol. Med. 2015. V. 83. P. 1; https://doi.org/10.1016/j.freeradbiomed.2015.02.006
- 6. Loshadkin D., Roginsky V., Pliss E. // Intern. J. Chem. Kinet. 2002. V. 34. № 3. P. 162; https://doi.org/10.1002/kin.10041
- 7. Roginsky V., Barsukova T. // Chem. Phys. Lipids. 2001. V. 111. № 1. P. 87; https://doi.org/10.1016/S0009-3084 (01)00148-7
- 8. Roginsky V., Barsukova T., Loshadkin D., Pliss E. // Chem. Phys. Lipids. 2003. V. 125. № 1. P. 49; https://doi.org/10.1016/S0009-3084 (03)00068-9
- 9. Roginsky V. // Free Radic. Res. 2001. V. 35. № 1. P. 55; https://doi.org/10.1080/10715760100300591
- 10. Москаленко И.В., Тихонов И.В. // Хим. физика. 2022. Т. 41. № 7. С. 18.
- 11. Costa V.M., Silva R., Ferreira L.M. et al. // Chem. Res. Toxicol. 2007. V. 20. № 8. P. 1183; https://doi.org/10.1021/tx7000916
- 12. Sirota T.V. // Biophysics. 2020. V. 65. P. 548; https://doi.org/10.1134/S0006350920040223
- 13. Mautjana N.A., Estes J., Eyler J.R. , Brajter-Toth A. // Electroanalysis. 2008. V. 20. № 18. P. 1959; https://doi.org/10.1002/elan.200804279
- 14. Iftikhar I., Abou El-Nour K., Brajter-Toth A. // Electrochim. Acta. 2017. V. 249. P. 145. https://doi.org/10.1016/j.electacta.2017.07.087
- 15. Русина И.Ф., Вепринцев Т.Л., Васильев Р.Ф. // Хим. физика. 2022. Т. 41. № 2. С. 12.
- 16. Mack F., Bonisch H. // Naunyn-Schmiedeberg‘s Arch. Pharmacol. 1979. V. 310. P. 1; https://doi.org/10.1007/BF00499868
- 17. Герасимов Н.Ю., Неврова О.В., Жигачева И.В., Генерозова И.П., Голощапов А.Н. // Хим. физика. 2023. Т. 42. № 1. С. 22.
- 18. Шишкина Л.Н., Козлов М.В., Константинова Т.В., Смирнова А.В., Швыдкий В.О. // Хим. физика. 2023. Т. 42. № 1. С. 28.
- 19. Jodko-Piorecka K., Sikora B., Kluzek M., Przybylski P., Litwinienko G. // J. Org. Chem. 2022. V. 87. № 3. P. 1791; https://doi.org/10.1021/acs.joc.1c02308