- Код статьи
- 10.31857/S0207401X24090042-1
- DOI
- 10.31857/S0207401X24090042
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 43 / Номер выпуска 9
- Страницы
- 35-41
- Аннотация
- Исследовано влияние катехоламинов на окисление метиллинолеата в мицеллах Triton X-100. Установлено, что катехоламины не тормозят окисление при физиологическом значении pH = 7.4. Ингибирование возможно только в присутствии фермента супероксиддисмутазы или при более низких значениях pH среды. Причиной данного эффекта является взаимодействие анионных форм фенолов и феноксильных радикалов с кислородом с образованием супероксидных анион-радикалов. Высокие значения коэффициентов ингибирования для катехоламинов в присутствии супероксиддисмутазы обусловлены реакциями циклизации образующихся орто-хинонов, приводящими к регенерации ОН-групп.
- Ключевые слова
- катехоламины метиллинолеат антиоксидантная активность супероксидный анион-радикал супероксиддисмутаза
- Дата публикации
- 14.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 2
Библиография
- 1. Tikhonov I., Roginsky V., Pliss E. // Intern. J. Chem. Kinet. 2008. V. 41. № 2. P. 92; https://doi.org/10.1002/kin.20377
- 2. Tichonov I., Roginsky V., Pliss E. // Eur. J. Lipid Sci. Technol. 2010. V. 112. № 8. P. 887; https://doi.org/10.1002/ejlt.200900282
- 3. Roginsky V. // Arch. Biochem. Biophys. 2003. V. 414. № 2. P. 261; https://doi.org/10.1016/S0003-9861 (03)00143-7
- 4. Roginsky V., Lissi E.A. // Food Chem. 2005. V. 92. № 2. P. 235; https://doi.org/10.1016/j.foodchem.2004.08.004
- 5. Jodko-Piorecka K., Litwinienko G. // Free Radic. Biol. Med. 2015. V. 83. P. 1; https://doi.org/10.1016/j.freeradbiomed.2015.02.006
- 6. Loshadkin D., Roginsky V., Pliss E. // Intern. J. Chem. Kinet. 2002. V. 34. № 3. P. 162; https://doi.org/10.1002/kin.10041
- 7. Roginsky V., Barsukova T. // Chem. Phys. Lipids. 2001. V. 111. № 1. P. 87; https://doi.org/10.1016/S0009-3084 (01)00148-7
- 8. Roginsky V., Barsukova T., Loshadkin D., Pliss E. // Chem. Phys. Lipids. 2003. V. 125. № 1. P. 49; https://doi.org/10.1016/S0009-3084 (03)00068-9
- 9. Roginsky V. // Free Radic. Res. 2001. V. 35. № 1. P. 55; https://doi.org/10.1080/10715760100300591
- 10. Москаленко И.В., Тихонов И.В. // Хим. физика. 2022. Т. 41. № 7. С. 18.
- 11. Costa V.M., Silva R., Ferreira L.M. et al. // Chem. Res. Toxicol. 2007. V. 20. № 8. P. 1183; https://doi.org/10.1021/tx7000916
- 12. Sirota T.V. // Biophysics. 2020. V. 65. P. 548; https://doi.org/10.1134/S0006350920040223
- 13. Mautjana N.A., Estes J., Eyler J.R. , Brajter-Toth A. // Electroanalysis. 2008. V. 20. № 18. P. 1959; https://doi.org/10.1002/elan.200804279
- 14. Iftikhar I., Abou El-Nour K., Brajter-Toth A. // Electrochim. Acta. 2017. V. 249. P. 145. https://doi.org/10.1016/j.electacta.2017.07.087
- 15. Русина И.Ф., Вепринцев Т.Л., Васильев Р.Ф. // Хим. физика. 2022. Т. 41. № 2. С. 12.
- 16. Mack F., Bonisch H. // Naunyn-Schmiedeberg‘s Arch. Pharmacol. 1979. V. 310. P. 1; https://doi.org/10.1007/BF00499868
- 17. Герасимов Н.Ю., Неврова О.В., Жигачева И.В., Генерозова И.П., Голощапов А.Н. // Хим. физика. 2023. Т. 42. № 1. С. 22.
- 18. Шишкина Л.Н., Козлов М.В., Константинова Т.В., Смирнова А.В., Швыдкий В.О. // Хим. физика. 2023. Т. 42. № 1. С. 28.
- 19. Jodko-Piorecka K., Sikora B., Kluzek M., Przybylski P., Litwinienko G. // J. Org. Chem. 2022. V. 87. № 3. P. 1791; https://doi.org/10.1021/acs.joc.1c02308