RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Pecularities of DNA binding to two-dimensional crystals of bacterial protein Dps from Escherichia coli based on molecular dynamics data

PII
10.31857/S0207401X24120086-1
DOI
10.31857/S0207401X24120086
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 12
Pages
84-94
Abstract
In this work, using coarse-grained molecular modeling methods, the interactions of DNA-binding protein from starved cells (Dps) of the bacterium Escherichia coli with DNA sections of various lengths and composition were investigated. The binding features in two-dimensional crystals of the Dps protein were studied. Using free energy search methods – thermodynamic integration and linear interaction energy – the most favorable conditions for the binding of DNA and Dps were determined.
Keywords
молекулярная динамика термодинамическое интегрирование линейная энергия взаимодействия взаимодействия Dps–ДНК полноатомные модели крупнозернистые модели бактерия Escherichia coli
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Ткаченко А.Г. Молекулярные механизмы стрессорных ответов у микроорганизмов. Екатеринбург: УрО РАН, 2012.
  2. 2. Amemiya H.M., Schroeder J., Freddolino P.L. // Transcription. 2021. V. 12. № 4. P. 182. https://doi.org/10.1080/21541264.2021.1973865
  3. 3. Minsky A., Shimoni E., Frenkiel-Krispin D. // Nat. Rev. Mol. Cell. Biol. 2002. V. 3. № 1. P. 50. https://doi.org/10.1038/nrm700
  4. 4. Loiko N., Danilova Y., Moiseenko A. et al. // PLoS One. 2020. V. 15(10). № e0231562. https://doi.org/10.1371/journal.pone.0231562
  5. 5. Крупянский Ю.Ф. // Хим. физика. 2021. Т. 40. № 3. С. 60. https://doi.org/10.31857/S0207401X21030079
  6. 6. Крупянский Ю.Ф., Коваленко В.В., Лойко Н.Г. и др. // Биофизика. 2022. Т. 67. № 4. С. 638. https://doi.org/10.31857/S0006302922040020
  7. 7. Almirón M., Link A.J., Furlong D., Kolter R. // Genes Dev. 1992. V. 612. P. 2646. https://doi.org/10.1101/gad.6.12b.2646
  8. 8. Karas V.O., Westerlaken I., Meyer A.S. // J. Bacteriol. 2015. V. 197. № 19. P. 3206. https://doi.org/10.1128/jb.00650-15
  9. 9. Orban K., Finkel S.E. // J. Bacteriol. 2022. V. 204. № e00036-22. https://doi.org/10.1128/jb.00036-22
  10. 10. Grant R.A., Filman D.J., Finkel S.E. et al. // Nat. Struct. Biol. 1998. № 5. P. 294. https://doi.org/10.1038/nsb0498-294
  11. 11. Frenkiel-Krispin D., Minsky A // J. Struct. Biol. 2006. V. 156. P. 311. https://doi.org/10.1016/j.jsb.2006.05.014
  12. 12. Лойко Н.Г., Сузина Н.Е., Соина В.С. и др. // Микробиология. 2017. Т. 86. № 6. С. 703. https://www.elibrary.ru/item.asp?id=35516020
  13. 13. Kovalenko V., Popov A., Santoni G. et al. // Acta Cryst. 2020. V. F76. P. 568. https://doi.org/10.1107/S2053230X20012571
  14. 14. Синицын Д.О., Лойко Н.Г., Гуларян С.К. и др.// Хим. физика. 2017. Т. 36. № 9. С. 59. https://doi.org/10.1134%2FS1990793117050128
  15. 15. Moiseenko A., Loiko N., Tereshkina K. et al. // Biochem. Biophys. Res. Commun. 2019. V. 517 № 3. P. 463. https://doi.org/10.1016%2Fj.bbrc.2019.07.103
  16. 16. Ceci P., Cellai S., Falvo E. et al. // Nucleic Acids Res. 2004. V. 32(19). P. 5935. https://doi.org/10.1093/nar/gkh915
  17. 17. Minsky A., Wolf S.G., Frenkiel D. et al. // Nature. 1999. V. 400. P. 83. https://doi.org/10.1038/21918
  18. 18. Tereshkin E.V., Tereshkina K.B., Krupyanskii Y.F. // JPCS. 2021. V. 2056 (1). № 012016. https://doi.org/10.1088/1742-6596/2056/1/012016
  19. 19. Loiko N.G., Tereshkin E.V., Kovalenko V.V. et al. // Microbiology. 2023. V. 92 (1). P. S78. https://doi.org/10.1134/S0026261723603640
  20. 20. Tereshkin E., Tereshkina K., Loiko N. et al. // J. Biomol. Struct. Dyn. 2018. V. 37. P. 2600. https://doi.org/10.1080/07391102.2018.1492458
  21. 21. Терешкин Э.В., Терешкина К.Б., Коваленко В.В. и др. // Хим. физика. 2019. V. 38. № 40. С. 48. https://doi.org/10.1134/S199079311905021X
  22. 22. Терешкин Э.В., Терешкина К.Б., Лойко Н.Г. и др. // Хим. физика. 2023. Т. 42. № 5. С. 30. https://doi.org/10.31857/S0207401X23050138
  23. 23. Uusitalo J.J., Ing´olfsson H.I., Akhshi P. et al. // JCTC. 2015. V. 11. № 8. P. 3932. https://doi.org/10.1021/acs.jctc.5b00286
  24. 24. Tereshkin E.V., Tereshkina K.B., Krupyanskii Y.F. // Supercomput. Front. Innov. 2022. V. 9. № 2. P. 33. https://doi.org/10.14529/jsfi220203
  25. 25. Antipov S.S., Tutukina M.N., Preobrazhenskaya E.V. et al. // PLoS One. 2017. V. 12. № e0182800. https://doi.org/10.1371/journal.pone.0182800
  26. 26. Hess B., Kutzner C., van der Spoel D., Lindahl E. // J. Chem. Theory Comput. 2008. V. 4. P. 435. https://doi.org/10.1021/ct700301q
  27. 27. Hadley K.R., McCabe C. // Mol. Simul. 2012. V. 38. P. 671. https://doi.org/10.1080/08927022.2012.671942
  28. 28. Bussi G., Donadio D., Parrinello M. // J. Chem. Phys. 2007. V. 126(1). № 014101. https://doi.org/10.1063/1.2408420
  29. 29. Aqvist J., Marelius J. // Comb. Chem. High Throughput Screening. 2001. V. 4. P. 613. https://doi.org/10.2174/1386207013330661
  30. 30. Amadei A., Linssen A.B., Berendsen H.J. // Proteins. 1993. V. 17. № 4. P. 412. https://doi.org/10.1002/prot.340170408
  31. 31. Azam T.A., Ishihama A. // J. Biol. Chem. 1999. V. 274(46). P. 33105. https://doi.org/10.1074/jbc.274.46.33105
  32. 32. Jen-Jacobson L. // Biopolymers. 1997. V. 44. P. 153. https://doi.org/10.1002/ (SICI)1097-0282(1997) 44:23.0.CO;2-U
  33. 33. Anashkina A.A. // Biophys Rev. 2023. V. 15. P. 1007. https://doi.org/10.1007/s12551-023-01137-7
  34. 34. Miller J.L., Kollman P.A. // Phys. Chem. 1996. V. 100. № 20. P. 8587. https://doi.org/10.1021/jp9605358
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library