ОХНМХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

ТЕРМОДИНАМИЧЕСКАЯ ОЦЕНКА РЕЖИМОВ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА ПРИ ВЫСОКОТЕМПЕРАТУРНОЙ КОНВЕРСИИ ОТРАБОТАННОГО МАСЛА

Код статьи
10.31857/S0207401X25070095-1
DOI
10.31857/S0207401X25070095
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 44 / Номер выпуска 7
Страницы
93-99
Аннотация
Проведена термодинамическая оценка условий получения синтез-газа при высокотемпературной конверсии отработанных масел с помощью метода минимизации свободной энергии Гиббса. Определены оптимальные условия для максимальной концентрации водорода при образовании минимального количества кокса. Расчеты равновесного состава продуктов выполнены при атмосферном давлении с варьированием коэффициента избытка топлива и количества паров воды. Результаты показывают, что оптимальными условиями при паровоздушной конверсии отработанного масла являются следующие: коэффициент избытка топлива, равный 3.5, и мольное отношение паров воды к кислороду, равное 0.2. При этих условиях не происходит коксообразование, а концентрации водорода и монооксида углерода в газе равняются 27.5 и 28.4% соответственно.
Ключевые слова
конверсия отработанное масло синтез-газ водород термодинамический анализ
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
9

Библиография

  1. 1. Holechek J. L., Geli H. M., Sawalhah M. N., Valdez R. // Sustainability. 2022. V. 14. № 8. P. 4792. https://doi.org/10.3390/su14084792
  2. 2. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2023. Т. 42. № 12. С. 48. https://doi.org/10.31857/S0207401X23120130
  3. 3. Асеева Р.М., Круглов Е.Ю., Кобелев А.А. и др. // Хим. физика. 2024. Т. 43. № 5. С. 47. https://doi.org/10.31857/S0207401X24050068
  4. 4. Kalak T. // Energies. 2023. V. 16. № 4. P. 1783. https://doi.org/10.3390/en16041783
  5. 5. Dorofeenko S., Podlesniy D., Polianczyk E. et al. // Energies. 2024. V. 17. № 23. P. 6093. https://doi.org/10.3390/en17236093
  6. 6. Li H., Feng Z., Ahmed A. T. et al. // J. Clean. Prod. 2022. V. 334. P. 130230. https://doi.org/10.1016/j.jclepro.2021.130230
  7. 7. Singhabhandhu A., Tezuka T. // Energy. 2010. V. 35. № 6. P. 2544. https://doi.org/10.1016/j.energy.2010.03.001
  8. 8. Wang Y., Yang Q., Ke L. et al. // Fuel. 2021. V. 283. 119170. https://doi.org/10.1016/j.fuel.2020.119170
  9. 9. Lam S.S., Liew R.K., Jusoh A. et al. // Renew. Sustain. Energy Rev. 2016. V. 53. P. 741. https://doi.org/10.1016/j.rser.2015.09.005
  10. 10. Su G., Ong H.C., Mofijur M., Mahlia T.I., Ok Y.S. // J. Hazard. Mater. 2022. V. 424. P. 127396. https://doi.org/10.1016/j.jhazmat.2021.127396
  11. 11. Mittelbach M. // Eur. J. Lipid Sci. Technol. 2015. V. 117. № 11. P. 1832. https://doi.org/10.1002/ejlt.201500125
  12. 12. Widodo S., Ariono D., Khoiruddin K., Hakim A.N., Wenten I.G. // Environ. Prog. Sustain. Energy. 2018. V. 37. № 6. P. 1867. https://doi.org/10.1002/ep.13011
  13. 13. Zhao N., Li B., Chen D. et al. // Waste Manage. 2020. V. 104. P. 20. https://doi.org/10.1016/j.wasman.2020.01.007
  14. 14. Akhmetshin M.R., Nyashina G.S., Romanov D.S. // Chem. Petrol. Eng. 2021.V. 56. № 9. P. 846. https://doi.org/10.1007/s10556-021-00851-x
  15. 15. Chen C.Y., Lee W.J., Mwangi J.K. et al. // Aerosol Air Qual. Res. 2017. V. 17. № 3. P. 899. https://doi.org/10.4209/aaqr.2016.09.0394
  16. 16. Кислов В.М., Цветков М.В., Зайченко А.Ю. и др. // Хим. физика. 2023. Т. 42. № 8. С. 39. https://doi.org/10.31857/S0207401X2308006X
  17. 17. Кришеник П.М., Костин С.В., Рогачев С.А. // Хим. физика. 2023. Т. 42. № 9. С. 39. https://doi.org/10.31857/S0207401X23090042
  18. 18. Кислов В.М., Цветкова Ю.Ю., Цветков М.В. и др. // Физика горения и взрыва. 2023. Т. 59. № 2. С. 83. https://doi.org/10.15372/FGV20230210
  19. 19. Toledo M., Arriagada A., Ripoll N., Salgansky E.A., Mujeebu M.A. // Renew. Sustain. Energy Rev. 2023. V. 177. 113213. https://doi.org/10.1016/j.rser.2023.113213
  20. 20. Салганский Е.А., Цветков М.В., Цветкова Ю.Ю. и др. // Хим. физика. 2022. Т. 41. № 11. C. 44. https://doi.org/10.1134/S1990793122060100
  21. 21. Polianczyk E., Tarasov G., Zaichenko A. // E3S Web Conf. 2024. V. 474. 01013. https://doi.org/10.1051/e3sconf/202447401013
  22. 22. Цветкова Ю.Ю., Кислов В.М., Пилипенко Е.Н., Салганская М.В., Цветков М.В. // Хим. физика. 2024. Т. 43. № 7. С. 89. https://doi.org/10.31857/S0207401X24070097
  23. 23. Arriagada A., Mena R., Ripoll N. et al. // Chem. Eng. J. 2024. V. 495. 153011. https://doi.org/10.1016/j.cej.2024.153011
  24. 24. Кислов В.М., Цветкова Ю.Ю., Пилипенко Е.Н., Репина М.А., Салганская М.В. // Хим. физика. 2023. Т. 42. № 3. С. 16. https://doi.org/10.31857/S0207401X2303007X
  25. 25. Кислов В.М., Глазов С.В., Салганский Е.А., Колесникова Ю.Ю., Салганская М.В. // Физика горения и взрыва. 2016. Т. 52. С. 320. https://doi.org/10.1134/S0010508216030102
  26. 26. Салганская М.В., Глазов С.В., Салганский Е.А. и др. // Хим. физика. 2008. Т. 27. № 1. С. 20. https://doi.org/10.1134/S1990793108010119
  27. 27. Rocha C., Soria M.A., Madeira L.M. // J. Energy Inst. 2019. V. 92. № 5. P. 1599. https://doi.org/10.1016/j.joei.2018.06.017
  28. 28. Noureddine H., Nahla F., Zouhour K., Marie-Noëlle P. // Energy Convers. Manag. 2013. V.70. P.174. https://doi.org/10.1016/j.enconman.2013.03.009
  29. 29. Xu J., Peng Z., Rong S. et al. // Fuel. 2021. V. 306. 121767. https://doi.org/10.1016/j.fuel.2021.121767
  30. 30. Трусов Б.Г. // Матер. XIV Междунар. конф. по хим. термодинамике. Спб: НИИХ СПбГУ, 2002. С. 483.
  31. 31. Chen Y., Tan H., Yan M. et al. // Sustain. Energy Technol. Assessments. 2024. V. 70. 103956. https://doi.org/10.1016/j.seta.2024.103956
  32. 32. Udoetuk E.N., Olatunbosun B.E., Adepojua T.F., Mayen I.A., Babalola R. // S. Afr. J. Chem. Eng. 2018. V. 25. № 1. P.169. https://doi.org/10.1016/j.sajce.2018.05.002
  33. 33. Li C., Sayaka I., Chisato F., Fujimoto K. // Appl. Catal. A: Gen. 2016. V. 509. P. 123. https://doi.org/10.1016/j.apcata.2015.10.028
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека