RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Structure, conductivity and sensor properties of NiO–In2O3 composites synthesis by different methods

PII
S0207401X25010105-1
DOI
10.31857/S0207401X25010105
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 1
Pages
90-95
Abstract
The effect of the synthesis method of NiO–In2O3 composites on their structural, conductive and sensory characteristics when detecting hydrogen was studied. Impregnation of indium oxide nanoparticles with a nickel nitrate salt and a hydrothermal method with aqueous solutions of the corresponding salts were used. It has been shown that during the impregnation process, nickel oxide is formed in the form of amorphous nanoparticles on the surface of indium oxide, and during hydrothermal treatment, nickel ions are introduced into In2O3 structures. In impregnated composites, the particle size of indium oxide does not depend on the composition and is 60 nm, while in hydrothermal composites it decreases from 35 to 30 nm with increasing nickel content. With an increase in nickel content from 0 to 3 wt.% for both synthesis methods, the conductivity decreases, and the resistance for hydrothermal samples is an order of magnitude higher than for impregnated ones. The sensory response was almost twice as high.
Keywords
композит гидротермальный метод метод импрегнирования оксид индия проводимость сенсорный отклик водород
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Li Q., Zeng W., Li Y. // Sens. Actuators, B. 2022. V. 359. P. 131579.
  2. 2. Zhang C., Xu K., Liu K., Xu J., Zheng Z. // Coord. Chem. Rev. 2022. V. 472. P. 214758.
  3. 3. Krishna K.G., Parne S., Pothukanuri N. et al. // Sens. Actuators, A. 2022. V. 341. P. 113578.
  4. 4. Trakhtenberg L.I., Ikim M.I., Ilegbusi O.J., Gromov V.F., Gerasimov G.N. // Chemosens. 2023. V. 11 № 6. P. 320.
  5. 5. Yan S., Song W., Wu D., Jin S., Dong S., Hao H., Gao W. // J. Alloys Compd. 2022. V. 896. P. 162887.
  6. 6. Иким М.И., Спиридонова Е.Ю., Громов В.Ф., Герасимов Г.Н., Трахтенберг Л.И. // Хим. физика. 2023. Т. 42. № 5. С. 71.
  7. 7. Jimenez L.C., Mendez H.A., Paez B.A., Ramırez M.E., Rodrıguez H. // Braz. J. Phys. 2006. V. 36. P. 1017.
  8. 8. Prathap P., Gowri D.G., Subbaiah Y.P.V., Ramakrishna R.K.T., Ganesan V. // Current Appl. Phys. 2008. V. 8. P. 120.
  9. 9. Герасимов Г.Н., Громов В.Ф., Иким М.И., Трахтенберг Л.И. // Хим. физика. 2021. Т. 40. № 11. С. 65.
  10. 10. Fan X., Xu Y., He, W. // RSC Advances. 2021. V. 11. № 19. P. 11215.
  11. 11. Zhang Y., Cao J., Wang Y. // Vacuum. 2022. V. 202. P. 111149.
  12. 12. Jin Z., Wang C., Wu L. et al. // Sens. Actuators, B. 2023. V. 377. P. 133058.
  13. 13. Иким М.И., Спиридонова Е.Ю., Громов В.Ф., Герасимов Г.Н., Трахтенберг Л.И. // Хим. физика. 2022. Т. 41. № 12. С. 79.
  14. 14. Громов В.Ф., Иким М.И., Герасимов Г.Н., Трахтенберг Л.И. // Хим. физика. 2021. Т. 40. № 12. С. 76.
  15. 15. Иким М.И., Спиридонова Е.Ю., Громов В.Ф., Герасимов Г.Н., Трахтенберг Л.И. // Хим. физика. 2024. Т. 43. № 1. С. 102
  16. 16. Wang Y., Yao M., Guan R., Zhang Z., Cao J. // J. Alloys Compd. 2021. V. 854. P. 157169.
  17. 17. Ikim M.I., Gromov V.F., Gerasimov G.N. et al. // Micromachines. 2023. V. 14(9). P. 1685.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library