ОХНМХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Структура, проводимость и сенсорные свойства композитов NiO–In2O3, синтезированных разными методами

Код статьи
S0207401X25010105-1
DOI
10.31857/S0207401X25010105
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 44 / Номер выпуска 1
Страницы
90-95
Аннотация
Исследовано влияние метода синтеза композитов NiO–In2O3 на их структурные, проводящие и сенсорные характеристики при детектировании водорода. Использовались импрегнирование наночастиц оксида индия солью нитрата никеля и гидротермальный метод с водными растворами соответствующих солей. Показано, что в процессе импрегнирования формируется оксид никеля в виде аморфных наночастиц на поверхности оксида индия, а при гидротермальной обработке ионы никеля внедряются в структуры In2O3. В импрегнированных композитах размер частиц оксида индия не зависит от состава и составляет 60 нм, в то время как в гидротермальных композитах он уменьшается от 35 до 30 нм при увеличении содержания никеля. С увеличением содержания никеля от 0 до 3 вес. % для обоих методов синтеза проводимость падает, а сопротивление для гидротермальных образцов на порядок выше, чем в импрегнированных. Практически в два раза выше оказался и сенсорный отклик.
Ключевые слова
композит гидротермальный метод метод импрегнирования оксид индия проводимость сенсорный отклик водород
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
6

Библиография

  1. 1. Li Q., Zeng W., Li Y. // Sens. Actuators, B. 2022. V. 359. P. 131579.
  2. 2. Zhang C., Xu K., Liu K., Xu J., Zheng Z. // Coord. Chem. Rev. 2022. V. 472. P. 214758.
  3. 3. Krishna K.G., Parne S., Pothukanuri N. et al. // Sens. Actuators, A. 2022. V. 341. P. 113578.
  4. 4. Trakhtenberg L.I., Ikim M.I., Ilegbusi O.J., Gromov V.F., Gerasimov G.N. // Chemosens. 2023. V. 11 № 6. P. 320.
  5. 5. Yan S., Song W., Wu D., Jin S., Dong S., Hao H., Gao W. // J. Alloys Compd. 2022. V. 896. P. 162887.
  6. 6. Иким М.И., Спиридонова Е.Ю., Громов В.Ф., Герасимов Г.Н., Трахтенберг Л.И. // Хим. физика. 2023. Т. 42. № 5. С. 71.
  7. 7. Jimenez L.C., Mendez H.A., Paez B.A., Ramırez M.E., Rodrıguez H. // Braz. J. Phys. 2006. V. 36. P. 1017.
  8. 8. Prathap P., Gowri D.G., Subbaiah Y.P.V., Ramakrishna R.K.T., Ganesan V. // Current Appl. Phys. 2008. V. 8. P. 120.
  9. 9. Герасимов Г.Н., Громов В.Ф., Иким М.И., Трахтенберг Л.И. // Хим. физика. 2021. Т. 40. № 11. С. 65.
  10. 10. Fan X., Xu Y., He, W. // RSC Advances. 2021. V. 11. № 19. P. 11215.
  11. 11. Zhang Y., Cao J., Wang Y. // Vacuum. 2022. V. 202. P. 111149.
  12. 12. Jin Z., Wang C., Wu L. et al. // Sens. Actuators, B. 2023. V. 377. P. 133058.
  13. 13. Иким М.И., Спиридонова Е.Ю., Громов В.Ф., Герасимов Г.Н., Трахтенберг Л.И. // Хим. физика. 2022. Т. 41. № 12. С. 79.
  14. 14. Громов В.Ф., Иким М.И., Герасимов Г.Н., Трахтенберг Л.И. // Хим. физика. 2021. Т. 40. № 12. С. 76.
  15. 15. Иким М.И., Спиридонова Е.Ю., Громов В.Ф., Герасимов Г.Н., Трахтенберг Л.И. // Хим. физика. 2024. Т. 43. № 1. С. 102
  16. 16. Wang Y., Yao M., Guan R., Zhang Z., Cao J. // J. Alloys Compd. 2021. V. 854. P. 157169.
  17. 17. Ikim M.I., Gromov V.F., Gerasimov G.N. et al. // Micromachines. 2023. V. 14(9). P. 1685.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека